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Schwartz space, Tempered Distributions and Fourier Transform

1. The Schwartz space S is the set of C∞(Rd) functions f satisfying sup
x∈Rd

|(1+|x|2)kDαf(x)| <∞

for all multi-indices α and non-negative integers k, endowed with the topology induced from the
countably many seminorms given by |f |k := sup

x∈Rd,|α|≤k
(1 + |x|2)kDαf(x)|. The Schwartz space S

is a Frechét space, i.e., it is a topological vector space whose topology is induced by a complete
metric.

2. Recall that we use the notation D(Rd) for smooth compactly supported functions on Rd. Also
recall that a linear functional T : D(Rd)→ C is said to be a distribution if for every compact set
K ⊂ Rd there is a constant C = C(K) > 0 and an integer N = N(K) such that |T (φ)| ≤ C||φ||N
for all φ ∈ D(Rd) whose support lies in K and ||φ||N is the sum of the norms of φ and all its
derivatives upto order N .

3. The dual space of S is the space of all tempered distributions denoted S ′ . Since D ⊂ S, it
can be shown that a tempered distribution is also a distribution through its restriction to D.

4. We define the Fourier transform for φ ∈ S(Rd) as

φ̂(ξ) = F(φ)(ξ) =

∫
Rd

φ(x)e−ix·ξdx.

Indeed this integral makes sense for φ ∈ L1(Rd) and consequently for φ ∈ S(Rd) ⊂ L1(Rd).

5. Properties of Fourier transform

(a) Fourier transform maps L1(Rd) to C0(Rd).
(b)

F(exp

(
−1

2
|x|2
)

) = (2π)d/2exp

(
−1

2
|ξ|2
)
.

(c) Fourier transform maps S(Rd) onto S(Rd) isomorphically. The inverse transform is defined
by

F−1(ψ)(x) =
1

(2π)d

∫
Rd

ψ(ξ)eix·ξdξ

so that
φ(x) =

1

(2π)d

∫
Rd

φ̂(ξ)eix·ξdξ.

(d)
1

(i)|α|
Dα
ξ (F(φ)) = F((−x)αφ)

(e)

F
(

1

(i)|α|
Dα
xφ

)
= ξαF(φ) for ψ, φ ∈ S(Rd),

(f) ∫
Rd

φ̂ψdx =

∫
Rd

φψ̂dξ.
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(g) ∫
Rd

φψdx =
1

(2π)d

∫
Rd

φ̂ψ̂dξ.

so that
||ψ||2L2(Rd) =

1

(2π)d
||ψ̂||2L2(Rd).

6. The last equality allows us to extend the Fourier transform upto L2(Rd) as an isometry. In that
case, the Fourier transform can no longer be thought of as an integral but as a limits of integrals.

7. The definition of Fourier transform may be extended to tempered distributions in the following
manner. Let φ ∈ S(Rd) and f ∈ S ′(Rd), then 〈f̂ , φ〉 := 〈f, φ̂〉. Most properties of Fourier
transforms in the case of Schwartz class functions extend to tempered distributions. In particular,
for φ ∈ S(Rd) and f ∈ S ′(Rd), observe that

〈Dαf̂ , φ〉 = (−i)|α|〈x̂αf, φ〉

and
〈D̂αf, φ〉 = (i)|α|〈ξαf̂ , φ〉.

Moreover, these equations hold true not only in the sense of distributions but in the strict
sense for functions in Sobolev spaces where derivative is defined not only as a distribution. For
u ∈ Hk(Rd), it holds true that D̂αu = (i)|α|ξαû in L2 sense.

Trace Theory

1. In the lectures, the notion of trace was defined for the upper half plane. Using partition of unity,
it can be extended to any bounded domain with a sufficiently smooth boundary. In particular,
the following theorem holds.

Theorem 1. Let Ω ⊂ Rd be a bounded open set of class Cm+1 with boundary Γ. Then there
exists a trace map γ = (γ0, γ1, . . . , γm−1) from Hm(Ω) into (L2(Ω))d such that

(a) If v ∈ C∞(Ω), then γ0(v) = v|Γ,γ1(v) = ∂v
∂ν |Γ, . . ., γm−1(v) = ∂m−1v

∂νm−1 |Γ, where ν is the unit
exterior normal to the boundary Γ.

(b) The range of the map γ is the space
m−1∏
j=0

Hm−j−1/2(Γ).

(c) The kernel of γ is Hm
0 (Ω).

2. Let Ω be a bounded open set with sufficiently smooth boundary and let u ∈ H1(Ω). Then there
exists a sequence (un) from C∞c (Rd) such that un|Ω → u in H1(Ω). Using this density result and
trace theorem, we can extend the Green’s formula to functions in H1(Ω), i.e., for u, v ∈ H1(Ω)
we have ∫

Ω
u
∂v

∂xi
= −

∫
Ω

∂u

∂xi
v +

∫
Γ
(γ0u)(γ0v)νi. (1)

Similarly, for u ∈ H2(Ω) and v ∈ H1(Ω), we have∫
Ω
∇u · ∇v = −

∫
Ω

(∆u)v +

∫
Γ
(γ0v)(γ1u). (2)

Moreover, for u, v ∈ H2(Ω), we have∫
Ω

(∆v)u−
∫

Ω
(∆u)v =

∫
Γ
(γ0u)(γ1v)−

∫
Γ
(γ0v)(γ1u). (3)
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Regularity Theory

1. The equation u
′′

+ u = f in (a, b) with u(a) = u(b) = 0 has a solution u ∈ H1
0 (a, b) for

f ∈ L2(a, b). It can be seen from the weak formulation of the equation that u ∈ H2(a, b). By
Morrey’s inequality, u ∈ C1, 1

2 (a, b). If f ∈ C[a, b], then again from the equation, we obtain
u ∈ C2(a, b). This is false in higher dimensions. Let R < 1 and BR(0) = BR the ball in Rd with
center at the origin. Let x = (x1, ..., xd) and define

f(x) =
x2

2 − x2
1

2|x|2

[
d+ 2

(− log |x|1/2)
+

1

2(− log |x|)3/2

]

u(x) = (x2
1 − x2

2)(− log |x|)1/2

φ(x) =
√
− logR(x2

1 − x2
2)

You can verify that f ∈ C(BR), u ∈ C(BR) ∩ C∞(BR \ {0}). Also,{
∆u = f in BR
u = φ in ∂BR

Nonetheless, lim|x|→0D11u(x) = 0, which implies that u /∈ C2(Br).

2. Case I: Rd Let u solve the equation −∆u + u = f in Rd where f ∈ L2(Rd). A solution to the
weak formulation exists in H1(Rd) by Lax-Milgram lemma. We can show that u ∈ H2(Rd) by
the following steps:

Step 1. Let w ∈ L2(Rd). For h ∈ Rd, define Dhw(x) = w(x+h)−w(x)
|h| . Prove that ∂w

∂xi
exists in L2(Rd)

if and only if ||Dteiw||L2(Rd) is bounded for all t > 0. In fact, ||Dteiw||L2(Rd) ≤ || ∂w∂xi ||L2

Step 2. TakingD−h(Dhu) as a test function in the weak formulation, we obtain the bound ||Dhu||2H1 ≤
||f ||L2 ||D−h(Dhu)||L2 .

Step 3. Using Step 1 on w = Dhu, we get ||D−h(Dhu)||L2 ≤ ||∇(Dhu)||L2 .
Step 4. Combining the inequalities in Step 2 and 3, we get ||Dh(∇u)||L2 ≤ ||f ||L2 . Finally using

Step 1, we get ∂2u
∂xi∂xk

exists in L2(Rd) for all 1 ≤ i ≤ d and 1 ≤ k ≤ d.

Step 5. Using induction and by “differentiating the equation”, we can prove that if f ∈ Hm(Rd)
then u ∈ Hm+2(Rd).

3. Case II: Rd+ Let u solve the equation{
−∆u+ u = f in Rd+

u = 0 in ∂Rd+

where f ∈ L2(Rd+). A solution to the weak formulation exists inH1
0 (Rd+) by Lax-Milgram lemma.

We can show that u ∈ H2(Rd+) by the following steps:

Step 1. Let w ∈ L2(Rd+). For h ∈ {(h1, h2, ·, hd−1, 0) : hi ∈ R}, define Dhw(x) = w(x+h)−w(x)
|h| . For

1 ≤ j ≤ d− 1, prove that ∂w
∂xi

exists in L2(Rd+) if and only if ||Dteiw||L2(Rd
+) is bounded for

all t > 0. In fact, ||Dteiw||L2(Rd
+) ≤ || ∂w∂xi ||L2(Rd

+)

Step 2. For 1 ≤ j ≤ d − 1, taking D−tei(Dteiu) as a test function in the weak formulation, we
obtain the bound ||Dteiu||2H1 ≤ ||f ||L2 ||D−tei(Dteiu)||L2 .

Step 3. Using Step 1 on w = Dteiu, we get ||D−tei(Dteiu)||L2 ≤ ||∇(Dteiu)||L2 for 1 ≤ j ≤ d− 1.
Step 4. Combining the inequalities in Step 2 and 3, we get ||Dtei(∇u)||L2 ≤ ||f ||L2 for 1 ≤ j ≤ d−1.

Finally using Step 1, we get ∂2u
∂xi∂xk

exists in L2(Rd+) for all 1 ≤ i ≤ d− 1 and 1 ≤ k ≤ d.
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Step 5. It remains to prove that
∂2u

∂x2
d

exists in L2(Rd+). This follows from the equation since

∂2u

∂x2
d

= −
d−1∑
j=1

∂2u

∂x2
j

+ u− f ∈ L2(Rd+).

4. Case III: Ω is a bounded open set with C2 boundary Use partition of unity for the boundary of
the domain Ω. This results in an equation for the interior of Ω. This equation holds in all of
Rd. Hence, Case I applies. One also obtains equations near the boundary which can be mapped
through a change of variables to a domain similar to the upper half plane. The proof of regularity
in this case is similar to the case of the upper half plane. The transformed equation is of the
form (4). For details, see H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential
Equations, Springer.

5. The method of difference quotients for proving regularity theorems is due to L. Nirenberg and
is called as the method of translations. The importance of the method lies in the fact that it can
be used to prove regularity theorems for variable-coefficient partial differential equations. For
example, Let A = (ajk(x))dj,k=1 be a matrix with Lipschitz continuous entries in Ω satisfying the
ellipticity condition, i.e., there exists α > 0 such that

∑d
j,k=1 ajk(x)ξjξk ≥ α|ξ|2 for all ξ ∈ Rd

and almost everywhere x ∈ Ω, then the equation{
−
∑d

j,k=1
∂
∂xk

(
ajk(x) ∂u∂xj

)
+ u = f in Ω

u = 0 in ∂Ω
(4)

has a solution u ∈ H1
0 (Ω) by Lax-Milgram lemma for f ∈ L2(Ω). However, by the method of

translations, we can prove that u ∈ H2(Ω).

Some Problems
1. Let u ∈ ∩∞m=0H

m(Ω), then prove that u ∈ C∞(Ω). Further, if Ω is a bounded open set with C1

boundary then prove that u ∈ C∞(Ω)

2. The regularity theorem tells us that u ∈ Hm+2(Ω) if f ∈ Hm(Ω) where u solves −∆u + u = f
in Ω with zero Dirichlet boundary conditions. Use the embedding theorems to find an integer
m such that if f ∈ Hm(Ω) then u is a classical solution of the equation.

3. Show that the function u(x, y) = (x2 − y2) log(x2 + y2) defined in R2 is locally bounded and
satisfies −∆u = f in the sense of distributions for a certain f ∈ L∞(R2) but is not in W 2,∞

loc =

C1,1
loc (R2).

4. Find s ∈ R such that the Dirac delta distribution δ0 belongs to Hs(Rd).

5. Without using embedding theorems, prove that for 1 < p ≤ ∞, W 1,p(0, 1) is continuously
embedded in C0,1−1/p. (Hint: Absolutely continuous functions satisfy fundamental theorem of
calculus.)

6. Let p be such that 1 < p ≤ ∞. Let (um) be a bounded sequence in W 1,p(0, 1). Show that there
is a subsequence (umk

) such that (umk
) converges in L∞(0, 1). Construct a counterexample for

the case of p = 1.

7. Let T be a distribution in Rd with the property that 〈T, φ〉 ≥ 0 for all non-negative φ ∈ D(Rd).
Show that u is of order 0.
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