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Abstract

The aim of this report is to introduce Wigner Transforms as a stepping stone to investigating

their role in Quantum Mechanics and its classical limits. We would, at some point, also like

to introduce the physical and the mathematical motivation for the particular form that Wigner

Transform takes. Finally, Wigner Measures will be presented.

1 Introduction

Quantum Mechanics prides itself on describing nature at all levels. Its peculiarities were, how-

ever, only manifest at subatomic levels until modern technological advancements had brought

them to our homes. Quantum mechanics has the distinction of not only producing classical

mechanics in a limiting way but also being dependent on classical mechanics for its very formu-

lation. Wigner Transforms illustrate this point very nicely as we shall see in this report.
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In Quantum Mechanics, the state of a particle is completely described by its wave function1,

ψ, which is a complex-valued function of time and space coordinates x ∈ Rd. The physi-

cal attributes of a particle may only be known in a probabilistic manner, with help from the

wave function. This probabilistic interpretation stems from the Heisenberg Uncertainty Princi-

ple (HUP). This is another place where classical mechanics makes its presence known in QM.

For people aware of the Hamiltonian formulation of classical mechanics, HUP states that two

canonically conjugate variables cannot be measured simultaneously to arbitrary degree of accu-

racy. For example the i− th component of position and i− th component of momentum are two

such quantities.

In the mathematical formalism, the wave function is a unit element in a Hilbert space, usu-

ally L2(Rd) and to every physical quantity, a(x, p), for example, position, momentum etc., is

associated a self-adjoint unbounded operator aW(x, D). The average value (called the expectation

value) of an operator is given by

< aW(x, D) >=
∫

Rd
ψ̄(x)aW(x, D)ψ(x)dx.

Further, |ψ(x)|2 is interpreted as the probability distribution of finding a particle in a region in

space.

The time evolution of the wave function is given by the Schrödinger equation(SE)

iε
∂

∂t
ψε(x, t) = − ε2

2
∆ψε(x, t) + V(x)ψε(x, t); ψε(x, 0) = ψε

0(x) ∈ L2(Rd).

Here, ε plays the role of Planck’s constant.2 For V ∈ C∞(Rd), bounded below, the Hamiltonian

operator Hε = − ε2

2 ∆ + V, initially defined on C∞
c (Rd), is essentially self-adjoint in L2(Rd).

This assures us of solution to the SE through the spectral theorem for unbounded self-adjoint

operators[RS81], [RS75]. Further, it leads to such results as conservation of energy and mass etc.

through the unitarity of the evolution semigroup.

1Strictly speaking its pure state is described by a wave function. A mixed state requires a density operator.
2It is understood that all physical variables have been rescaled so that only one dimensionless quantity ε remains.
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1.1 Classical Limits

It is taken as a general principle in Quantum Mechanics that Classical Mechanics should be a

limiting case of Quantum Mechanics as the Planck’s constant, h goes to zero. Planck’s constant

is, of course, a constant and by its vanishing limit we mean the vanishing limit of some dimen-

sionless parameter obtained after appropriately scaling the Schrödinger equation. Should we

analyze the limit of the wave function ψε? Since ψε ∈ L2(Rd), should we ask for strong conver-

gence in L2 to some limiting function which solves some classical equation? This is, in fact, a

futile hope. Solutions of partial differential equations like the Schrödinger equation show such

phenomena as oscillations and concentrations which we do not define but indicate through

some examples and pictures.

Figure 1: Evolution of position density for a free particle

Oscillations and Concentrations prevent functions from having a strong limit. This is evident

from the example of fn(x) = sin(nx) in L2([0, 2π]) where strong convergence fails but weak

convergence holds. A corresponding example for concentrations can be constructed by taking

ρ ∈ L2(Rd), supp ρ ⊆ B(0, 1),
∫

ρ2dx = 1 and defining ρε(x) = ε−d/2ρ(x/ε). This converges

weakly to 0 in L2(Rd).

We may compute weak limit of the wave functions or weak-* limit in the space of measures.
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Figure 2: Oscillations

Figure 3: Concentrations

These however will not allow us to compute limits of expectation values of observables because

these are quadratic functions of wave functions and it is a well known fact that weak limits do

not commute with nonlinear operations. As example again consider fn(x) = sin(nx) with weak

limit 0 in L2([0, 2π]), whereas, f 2
n ⇀ 1

2 .

2 Wigner Transforms

At this point, Wigner Transforms come to the rescue. In 1932, Eugene Wigner[Wig32] came up

with an equivalent phase-space formulation of Quantum Mechanics in terms of, what are now

called, Wigner Transforms. For f , g ∈ S(Rd),

wε( f , g)(x, ξ) =
1

(2π)d

∫
Rd

f
(

x− εv
2

)
ḡ
(

x +
εv
2

)
eiξ·vdv.
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To begin with, we would like to define the Wigner Transform for more general class of functions.

For F ∈ S(R2d), we would like to define two operations

Tε
s F(x, v) = F

(
x− εv

2
, x +

εv
2

)
.

T̃ε
s F(x, v) =

1
εd F

(
x + v

2
,

v− x
ε

)
.

For F ∈ S(R2d), the Fourier Transform in the second variable is defined as

F2F(x, v) =
∫

Rd
F(x, ξ)e−iv·ξ dξ.

and the inverse Fourier transform in the second variable is defined as

F̃2F(x, v) =
1

(2π)d

∫
Rd

F(x, ξ)eiv·ξ dξ.

These four definitions we would like to extend to more general functions spaces, in particular,

tempered distributions are most suitable for this purpose.

For f ∈ S ′(R2d) and φ ∈ S(R2d),

< Tε
s f , φ >=< f , T̃ε

s φ >

< T̃ε
s f , φ >=< f , Tε

s φ > .

< F2 f , φ >= (2π)d < f , F̃2φ >

< F̃2 f , φ >=
1

(2π)d < f ,F2φ > .

These definitions are motivated by duality and hold in the usual sense when the distributions

come from Schwartz class functions, for example. We stress that since these are distributions

acting on complex valued functions and we make the convention that the distribution acts on

the complex conjugate of the function; This allows us to match up the action of a distribution

with the L2 inner product in appropriate situations.

These then also allow us to give a more general definition for Wigner Transforms. For

f , g ∈ S ′(Rd)

wε( f , g) = F̃2Tε
s ( f ḡ).

We shall get back to the matter of Wigner measures after a detour through Weyl Quantiza-

tion.
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3 Weyl Quantization

For physically relevant reasons, the operator associated with the physical quantity position is

multiplication by the position coordinate and the operator associated with the i− th component

of momentum is ε
i

∂
∂xi

. These considerations led Weyl[Wey27] to a quantization scheme for

classical physical observables (smooth functions on the phase space Rd
x × Rd

p), a(x, p). The

proper context in which to study Weyl Quantization is the theory of pseudodifferential operators

and microlocal analysis. For our purposes, it will suffice to define Weyl Quantization in simpler

situations involving Schwartz Class, S(Rd), the class of tempered distributions, S ′(Rd) and at

most, L2(Rd). A study of pseudodifferential operators is a task for another time.

For a ∈ S(R2d) and f ∈ S(Rd),

aW(x, εD) f (x) =
1

(2π)d

∫
R2d

a
(

x + y
2

, εξ

)
f (y) ei(x−y)·ξdξdy

is well-defined and the ”operator” aW(x, εD) is known as the Weyl-Quantization of the ”sym-

bol” a. In the perfectly smooth setting the above may be seen as an integral operator with kernel

given by

Kε(x, y) =
1

(2π)d

∫
Rd

a
(

x + y
2

, εξ

)
ei(x−y)·ξ dξ.

This expression can be written in a form that allows for extension to more general spaces.

Kε =
1

(2π)d T̃ε
s F2a.

We see aW(x, εD) f as a tempered distribution that acts on g ∈ S(Rd) through the following

equation

< aW(x, εD) f , g >:=< Kε, g f > .

The above would make sense even if a ∈ S ′(R2d) and f , g ∈ S(R2d). The great advantage of

this equation is that it allows us to connect Weyl Quantization with Wigner Transforms.
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< aW(x, εD) f , g > = < Kε, g f >

=
1

(2π)d < T̃ε
s F2a, g f >

=
1

(2π)d < F2a, Tε
s (g f ) >

= < a, F̃2Tε
s (g f ) >

= < a, wε(g, f ) >

4 Wigner Measures

As mentioned earlier, for f , g ∈ S ′(Rd), Wigner Transforms enjoy the more general definition

wε( f , g) = F̃2Tε
s ( f ḡ).

Suppose that f , g come from a bounded set in L2(Rd), then this definition makes it clear that

the Wigner Transforms {wε( f , g)} will also lie in a bounded set of L2(R2d) independent of

ε. However, for our purposes, it suffices that the Wigner Transform lies in bounded subset

of S ′(R2d) independent of ε. Now, Banach Alaoglu Theorem[Rud91] allows us to obtain a

subsequence which converges weak-∗ to a tempered distribution w (the choice of subsequence is

by no means, unique). The next estimate makes it possible to prove that the limiting distribution

is a positive measure.

Proposition 1 (Gérard et al. 1997[GMMP97]) For a, b ∈ S(R2d),

< wε( f , g), ab >=
∫

Rd
(aW(x, εDx) f )(bW(x, εDx)g)dx + rε

where |rε| ≤ C(a, b)|| f ||||g||

First, observe that when a ∈ S(R2d), the ”operator” aW(x, εD) takes S ′ into S . The proof

requires the identity

< wε( f , g), ab >=
∫

f
(

x− ε
v
2

)
g
(

x + ε
v
2

)
F̃2a(x, u)F̃2b(x, u− v)dxdudv.

To see this is easy once we know how to write the product of two inverse Fourier transforms

as a convolution. Now make a change of variable, v = u− u
′

and x = x
′ − ε u+u

′

2 . The identity
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becomes

< wε( f , g), ab >=
∫

f (x
′ − εu)F̃2a

(
x
′ − ε

u + u
′

2
, u

)
g(x

′ − εu
′
)F̃2b

(
x
′ − ε

u + u
′

2
, u
′
)

dx
′
dudu

′
.

The expressions in a, b are ready-made to apply the Fundamental Theorem of Calculus. Appro-

priate manipulations then yield the required estimate.

We can show w( f , f ), the limit of the Wigner Transforms for f = g, is a measure by taking

f = g in the above estimate and noting that every nonnegative function c ∈ C∞
c (Rd) is obtainable

as the limit of |dn|2 for an appropriate sequence {bn} in C∞
c (Rd). Therefore, this limit is known

as a Wigner Measure.

Now, we must elucidate the relation of Wigner Measures to the semiclassical limits of Quan-

tum Mechanics. As mentioned earlier, the solution to the Schrödinger equation exist under fairly

mild conditions on the potential V, for example, V should be C1 and bounded below. These

solutions stay in L2(Rd) for all time due to the unitarity of the evolution semigroup. The Wigner

Transform of the solution of the Schrödinger equation satisfies the Wigner equation namely

∂

∂t
wε + p · ∇xwε + Θε[V]wε = 0, wε|t=0 = wε

0

where

(Θε[V] f )(x, p) := − i
(2π)d

∫ ∫
Rd

1
ε

(
V
(

x +
ε

2
y
)
−V

(
x− ε

2
y
))

f (x, q)eiy.(p−q)dydq.

Notice that this equation closely resembles the Liouville equation from Classical Mechanics. In

fact, formally, the last term goes to ∇xV · ∇pw0 in the vanishing limit of ε. This can be made

rigorous as the following theorem suggests.

Theorem 2 (Lions, Paul ’93[PL93]) Suppose V is such that the Hamiltonian in the Schrödinger equation

is essentially self-adjoint. For definiteness, let V ∈ C∞(Rd) and V ≥ 0.

1. The limiting Wigner measure corresponding to the solution of the Schrödinger equation satisfies in

the sense of distributions the following equation

∂

∂t
w0

t + p · ∇xw0
t −∇xV · ∇pw0

t = 0, w0|t=0 = w0
0
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2. If, in addition, V ∈ C1,1(Rd), then w0 is the unique solution of the above equation in Cb(R,M+(R2d)).

Further, the Wigner Measure is transported along the Hamiltonian Flow associated with the differ-

ential equation

ẋ = p

ṗ = −∇V(x).

In other words, if Φt is the Hamiltonian flow of the above system of differential equations, then the

Wigner Measure at time t is the push-forward under this flow map of the Wigner Measure at time

t = 0. For f measurable,

∫ ∫
R2d

f (x, p)dw0(x, p, t) =
∫ ∫

R2d
f ◦Φt(x, p)dw0(x, p, 0).

4.1 Examples

• For concentrating functions, i.e., ψε(x) = (ε)−d/2 f
(

x−x0
ε

)
for f smooth and compactly

supported, we have wε(x, p) = 1
εd w

(
x−x0

ε , p
)

where w(x, p) = 1
(2π)d

∫
Rd f

(
x + y

2
)

f
(
x− y

2
)

eiy.pdy.

Observe that

< wε, φ > =
∫

Rd
x

∫
Rd

p

φ(x, p)
1
εd w

(
x− x0

ε
, p
)

dpdx

=
∫

Rd
p

{∫
Rd

(φ(x0 + εz, p)− φ(x0, p))w(z, p)dz + φ(x0)
∫

Rd
w(z, p)dz

}
dp

→
∫

Rd
p

∫
Rd

φ(x0, p)w(z, p)dzdp

=
∫

Rd
p

∫
Rd

x

φ(x, p)dw(x, p)

where

w(x, p) = δx0 ⊗
∫

Rd
w(z, p)dz = (2π)−d| f̂ (p)|2δx0 .

This last equality comes from the fact that the x-moment of Wigner Transform is the modu-

lus squared of Fourier Transform of the function f . (and similarly, the p-moment of Wigner

Transform is the modulus squared of the function.) These can be easily verified from the

formula and the usual Fourier identities.

• For semiclassical wave packets, i.e., ψε(x) = ε−d/4 f
(

x−x0
ε

)
eip0·x/ε, after some calculation
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the Wigner Measure is found to be

w(x, p) =
(∫

Rd
| f (x)|2dx

)
δx0 ⊗ δp0 .

These examples are adapted from the paper of Lions and Paul[PL93].

A Fourier Transform

We define the Schwartz class, S of functions to be the space

S(Rd) =

{
φ ∈ C∞(Rd; C) : sup

x∈Rd
|xαDβφ(x)| < ∞ f or all α, β ∈Nd ∪ {0}

}
.

The function that, in some sense, characterizes the Schwartz class is φ(x) = exp
(
− 1

2 |x|2
)

. The

theory of Fourier transform is progresses in the easiest manner for the Schwartz class. We define

the Fourier transform for φ ∈ S(Rd) as

φ̂(ξ) = F (φ)(ξ) =
∫

Rd
φ(x)e−ix·ξ dx.

Indeed this integral makes sense for φ ∈ L1(Rd) and consequently for φ ∈ S(Rd) ⊂ L1(Rd).

This appendix is to serve as a quick reminder of the important properties of Fourier Transform.

Proofs may be found in books such as Kesavan[Kes89], Zworski[Zwo12].

Theorem 3 1. Fourier Transform maps L1(Rd) to C0(R
d).

2.

F (exp
(
−1

2
|x|2

)
) = (2π)d/2exp

(
−1

2
|ξ|2
)

.

3. Fourier transform maps S(Rd) onto S(Rd) isomorphically. The inverse transform is defined by

F−1(ψ)(x) =
1

(2π)d

∫
Rd

ψ(ξ)eix·ξdξ

so that

φ(x) =
1

(2π)d

∫
Rd

φ̂(ξ)eix·ξ dξ.

4.

1
(i)|α|

Dα
ξ (F (φ)) = F ((−x)αφ)
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5.

F
(

1
(i)|α|

Dα
xφ

)
= ξαF (φ)

For ψ, φ ∈ S(Rd),

6. ∫
Rd

φ̂ψdx =
∫

Rd
φψ̂dξ.

7. ∫
Rd

φψdx =
1

(2π)d

∫
Rd

φ̂ψ̂dξ.

so that

||ψ||2L2(Rd)
=

1
(2π)d ||ψ̂||

2
L2(Rd)

.

In particular, the last equality allows us to extend the Fourier transform upto L2(Rd) as an

isometry. In that case, The Fourier transform can no longer be thought of as an integral but as

a limits of integrals. Moreover, the Fourier Inversion formula holds also in the case when both

φ and φ̂ belong to L1(Rd) and then, φ agrees with a continuous function almost everywhere. In

case, φ ∈ L1(Rd), the Fourier inversion formula can be made sense of in the following sense, for

Lebesgue almost everywhere x ∈ Rd,

φ(x) = lim
ε→0

1
(2π)d

∫
Rd

eix·ξ e−ε2ξ2/2 f̂ (ξ)dξ.

Some mention need also be made of tempered distributions. Suffice to say that they are

the topological dual space of the Schwartz class, S . The Schwartz class is a Frechét space with

countably many semi-norms given by

pN(φ) = sup
|α|,|β|≤N

|xαDβφ(x)|.

Tempered distributions find an important place in Fourier Analysis and the theory of Distribu-

tions1. Note that since we are talking about complex valued functions, tempered distributions

act on complex conjugate of Schwartz class functions. This convention has the advantage that

it corresponds to the L2 inner product when the need arises. The definition of Fourier trans-

form may be extended to tempered distributions in the following manner. Let φ ∈ S(Rd) and

f ∈ S ′(Rd), then < F ( f ), φ >:= (2π)d < f ,F−1(φ) > and < F−1( f ), φ >:= 1
(2π)d < f ,F (φ) >.

1invented by Laurent Schwartz for which he receieved the Fields Medal in 1950.
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B Notation

M+(Rd) Space of positive measures on Rd

C0(R
d) Completion of the space of continuous functions on Rd

with compact support under supremum norm

Dα ∂α1
∂x1

∂α2
∂x2

. . . ∂αd
∂xd

where α = (α1, α2, . . . , αd)

|α| |α1|+ |α2|+ . . . + |αd| where α = (α1, α2, . . . , αd)

xα xα1
1 xα2

2 . . . xαd
d for x ∈ Rd, α ∈Nd ∪ {0}
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