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Abstract

This thesis is devoted to the Bloch wave method which is a spectral method in the

theory of homogenization. Homogenization theory can be traced to the study of

composite materials, where the equations contain a small parameter representing

the scale of heterogeneities in the material. The Bloch wave method was developed

by Conca and Vanninathan. It relies on the direct integral decomposition of

periodic elliptic operators. The spectrum of such operators is a union of intervals

and spectral edges determine a variety of physical phenomena. Homogenization

may be thought of as one such spectral edge (or threshold) effect. As such,

the Bloch wave method relies on regularity properties of the spectral edges, i.e.,

smoothness of Bloch eigenvalues close to a spectral edge and structural properties

of the coefficients, i.e., periodicity.

The first part of this thesis consists of studying the regularity properties

of spectral edges. Generic simplicity of spectral edges under various regularity

assumptions on the coefficients is proved. In particular, a perturbation of the

coefficients results in a spectral edge which is attained by only one Bloch eigenvalue.

It must be recalled that for the applications to homogenization, it is necessary to

consider coefficients that are only measurable and bounded. By employing such a

result, certain resolvent estimates for internal edge homogenization are established

for a multiple spectral edge.

The second part of this thesis extends the Bloch wave method to a class of

media not satisfying the structural property of periodicity. This task is performed

for almost periodic media through periodic approximations on cubes of increasing

size. On the way, an interesting module containment result is proved. A rate of

convergence result for approximate homogenized tensors is also proved under a

decay condition on a modulus of almost periodicity. This decay condition subsumes

the well-known Kozlov condition for quasiperiodic coefficients. Finally, Bloch wave

homogenization is achieved for quasiperiodic operators by lifting to degenerate

periodic operators.
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Chapter 1

Introduction

This thesis is concerned with asymptotic analysis of partial differential equations,

specifically theory of homogenization. Qualitative homogenization theory proposes

effective macroscopic equations for equations with highly oscillatory coefficients.

The size of oscillations is denoted by a small parameter ϵ and the effective equation

is obtained in the limit as ϵ → 0. Therefore, the qualitative theory answers

the important physical question of which models are valid at what scales. On

the other hand, the quantitative theory of homogenization aims to construct

approximate solutions and establish corresponding rates of convergence, which

exploits compactness methods to establish regularity results. This regularity theory

relies on the fact that the homogenized tensor is a constant matrix in many cases

and therefore has more regular solutions. The regularity of the limit solution

is used to prove uniform regularity results for solutions at the ϵ-scale. In this

chapter, we will describe the theory of homogenization, spectral theory of periodic

operators, Bloch wave method of homogenization and our contributions to these

areas of research.

We will study the prototype operator which exhibits all the phenomena that

we wish to explore: viz. the second-order elliptic operator in divergence form,

given by

Au := −div(A(y)∇u) = −
∂

∂yk

(
akl(y)

∂u

∂yl

)
, (1.1)

where summation convention over repeated indices is assumed. Throughout this

thesis, we shall make the following assumptions on the entries of the matrix A.

(A1) The coefficients A = (akl(y)) are measurable bounded real-valued functions

defined on Rd. In other words, akl ∈ L∞(Rd).

(A2) The matrix A = (akl) is symmetric, i.e., akl(y) = alk(y).

1



2 Introduction

(A3) Further, the matrix A is coercive, i.e., there exists an α > 0 such that

∀ v ∈ Rd and a.e. y ∈ Rd, ⟨A(y)v, v⟩ ≥ α||v||2. (1.2)

We shall additionally impose structural conditions on the coefficients of the operator.

In the earlier part of the thesis, the entries of A are assumed to be periodic;

whereas, in the later parts, the entries of A will be almost periodic. The notion of

periodicity and almost periodicity will be defined in due course. The introduction

chapter is planned as follows – In Section 1.1, we will state the central problem

of homogenization theory and the main theorem in periodic homogenization. In

Section 1.2, we will describe the Bloch wave method in considerable detail. In

Section 1.3, we shall discuss parametrized eigenvalue problems, of which, Bloch

eigenvalue problem is an example. In Section 1.4, we shall explain the notion of

spectral edge of a periodic elliptic operator and discuss how it appears in Bloch

wave method. In Section 1.5, we review the internal edge homogenization theorem

of Birman and Suslina. In Section 1.6, we shall review the homogenization theory

of almost periodic media and compare it to periodic homogenization. In Section 1.7,

we will describe our contributions to the topics discussed in the previous sections

and compare them to available literature.

1.1 Theory of periodic homogenization

In homogenization, one studies the limits of solutions to equations with highly

oscillatory coefficients, such as

Lϵuϵ = 0 in Ω ⊂ Rd.

Suppose that, as ϵ → 0, uϵ converges to u∗ in an appropriate sense, often

weakly in some function space. Then, the aim of theory of homogenization is to

derive an effective operator L∗ such that

L∗u∗ = 0 in Ω.

A concrete example where such a problem arises is that of composite materials.

Composite materials are obtained from a number of small-scale constituents in

different configurations. Their size is much smaller compared to the global dimen-

sion of the composite. At the microscopic level, such a material is heterogeneous,

whereas at a macroscopic level, the material looks homogeneous. Homogenization
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gives the macroscopic description of the composite material which is heterogeneous

at the microscopic level.

To fix the notions, consider a model for heat conduction through a material.

This is given by a partial differential equation of the formAu = −∇ · (A∇u(y)) = f(y) in Ω

u = 0 on ∂Ω
(1.3)

where A represents the conductivity tensor for the material, u represents tempera-

ture, f is the heat source and Ω is a bounded open set in Rd. A is a constant for a

homogeneous material, however for a composite, A would be a function of x ∈ Ω.

In fact, it would be a highly oscillatory function. To simplify matters, and indeed,

as is the case in many physical applications, we could assume the configuration of

heterogeneities in the composite to be periodic. In later chapters of this thesis, we

shall also consider almost periodic configurations.

To introduce periodicity, we define a reference cell Y = [0, 2π)d , and cover Rd

with translates of Y. In the reference cell, the tensor A is a function of period 2π,

hereby, called, Y-periodic. The space of measurable bounded periodic real-valued

functions in Y is denoted by L∞♯ (Y,R). Hence, akl ∈ L∞♯ (Y,R). In many instances,

we will identify Y with a torus Td and the space L∞♯ (Y,R) with L∞(Td,R), in the

standard way. Let ϵ > 0 be a small number much less than 1. To introduce

heterogeneity in the form of arbitrarily small period, we repeat the same procedure

with ϵY instead of Y. Now, the domain Ω is covered with a lattice of period ϵY.

ϵY-Periodicity is introduced in the conductivity tensor by writing Aϵ(x) = A
(
x
ϵ

)
.

The problem becomesAϵuϵ B −div(Aϵ(x)∇uϵ(x)) = f(x) in Ω

uϵ = 0 on ∂Ω
(1.4)

By a simple application of Lax-Milgram lemma, we conclude that the solu-

tions of equation (1.4), uϵ are uniformly bounded in H1 norm. Therefore, for a

subsequence, uϵ ⇀ u∗ in H1
0
(Ω)-weak. We shall characterize u∗, in the sense that

we shall find a tensor A∗ so that the following holds−div(A∗(y)∇u∗(y)) = f(y) in Ω

u = 0 on ∂Ω.
(1.5)

The effective matrix A∗ is given in terms of the solutions of the cell problem,

known as correctors. All of this information is collected in the following theorem:
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Figure 1.1: Reference cell Y

x axis

y axis

Figure 1.2: Ω in ϵY lattice
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Theorem 1.1. Let Ω be an arbitrary domain in Rd and f ∈ L2(Ω). Let

uϵ ∈ H1(Ω) be such that uϵ converges weakly to u∗ in H1(Ω), and

−div(Aϵ(x)∇uϵ(x)) = f(x) in Ω. (1.6)

Then, the limit u∗ satisfies the homogenized equation:

A∗u∗ B −div(A∗∇u∗) = f in Ω. (1.7)

The homogenized coefficients A∗ = (a∗
kl
) are given by

a∗kl =
1

|Y|

∫
Y

akl(y)dy+
1

|Y|

∫
Y

akp(y)
∂wl

∂yp
dy, (1.8)

where the corrector wl ∈ H1♯(Y)/R, l = 1, 2, . . . , d satisfies the cell problem:

−div(A(el + ∇wl)) = 0 in Y. (1.9)

Various methods exist for obtaining homogenization limits such as the formal

method of two-scale asymptotic expansions [SP80, BP89, BLP11], method of oscil-

lating test functions [CK97], two-scale convergence [Ngu89, All92], gamma conver-

gence [DM93], Bloch wave method [CV97], method of periodic unfolding [CDG18].

Further, for a broad introduction to the area of homogenization see [BP89,

BLP11, JKO94, BD98, CD99, All02, MK06, CPS07, Tar09]. For an exhaustive

account of quantitative theory of homogenization for periodic and stochastic media

see [She18, AKM19] respectively.

1.2 Periodic homogenization by Bloch wave

method

Differential equations with periodic coefficients have been studied by mathemati-

cians such as Hill, Mathieu and Floquet since 19th century and the equations as

well as the theory bear their name. F. Bloch rediscovered aspects of this theory

for Schrödinger operator with a periodic potential in connection with solid state

physics. The Bloch wave method, developed by Conca and Vanninathan [CV97],

uses the spectral theory of periodic differential operators in L2(Rd) to characterize

the homogenization limit.

In the context of homogenization, some early works where Bloch waves make

an appearance are [Sev81, Tur82, Zhi89, SS91] The book [CPV95] contains a

wealth of information on Bloch waves as applied to fluid-structure interaction
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problems. The Bloch wave homogenization was formalized as a framework for

periodic homogenization in [CV97]. Ever since, this framework has been applied

to non-selfadjoint problems [SGV04], system of elasticity [SGV05], Maxwell’s

system [SEK+05], domain with holes [DOS09], Stokes system [ACFO07, AGV17],

etc. It has also been combined successfully with the theory of two-scale convergence

to study a variety of evolution problems [ACP+04, AP05, APR11, APR13]. More

applications to dispersion limits appear in [DLS14, ABV16, BG19].

The works cited above mostly deal with qualitative aspects of homogenization.

Quantitative aspects of Bloch wave homogenization were first studied through the

Bloch approximation in [COV02, COV05]. Norm resolvent estimates were obtained

in [BS04] using Bloch decomposition and perturbation theory. Operator theoretic

techniques have further been exploited to study critical-contrast media in [CEK19].

The process of Bloch wave homogenization may be split into the following

steps:

1. Spectral decomposition of the periodic operator using Bloch waves.

2. Convert the periodic equation into a family of elliptic equations in Bloch

space.

3. Regularity of the Bloch eigenpairs in the Bloch parameter.

4. Localization and passage to limit.

1.2.1 Direct integral decomposition

The differential operators that arise in mathematical physics are usually self-adjoint

with compact resolvents, however, a differential operator in L2(Rd) rarely have

compact resolvent. Hence, spectral theory of differential operators in L2(Rd) is not

very well developed. In a first step, under the additional structural assumption

of periodicity, the operator A will be decomposed as a fibered operator called a

“Hilbert bundle”. This decomposition is called a direct integral decomposition. In

a second step, the spectrum of fibered operators is given by Bloch eigenvalues and

they can be diagonalized using Bloch eigenfunctions. Moreover, the spectrum of A

is found to be the union of Bloch eigenvalues.

A rigorous development of direct integral decomposition may be found

in [Mau68]. In this abstract theory, the symmetries associated with translation

operators and the operator A induce a decomposition of the Hilbert space L2(Rd)
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and a corresponding decomposition of the operator A as a direct integral whose

fibers act distributively over the fibers of the decomposed Hilbert space.

Physically, the motivation comes from asking what kind of waves are sup-

ported by a periodically heterogeneous medium. It is known that plane waves are

supported in a homogeneous medium. This physical statement may be interpreted

to mean that plane waves act as generalized eigenfunctions for the Laplacian in Rd.

Therefore, we may ask what kind of eigenfunctions ψ exist for periodic operators.

The answer to this question is motivated by the linear algebra fact that a family of

commuting diagonalizable matrices can be diagonalized simultaneously. A periodic

operator commutes with translation operators corresponding to translations by

periods. These translation operators, given by Tpψ(y) B ψ(y+ p) for p ∈ Zd, are

unitary and therefore their eigenvalues are complex numbers of modulus 1. Hence,

the eigenfunctions satisfy the following property:

Tpψ(y) = ψ(y+ 2πp) = e2πiη.pψ(y), p ∈ Zd.

The functions satisfying the second equality are known as (η, Y)-periodic functions.

This property is invariant under Zd-shifts of η, hence, without loss of generality

we make the restriction that η should vary in η ∈
[
−
1

2
,
1

2

)d
.

Clearly, there is a one-to-one correspondence between (η, Y)-periodic and

Y-periodic functions. This is achieved by the following transformation

ψ(y) = eiη.yϕ(y),

where ψ is (η, Y)-periodic and ϕ is Y-periodic. The above relation is called the

Floquet ansatz. In fact, every (η, Y)-periodic function can be written as a product

of a periodic function and eiη·y. Hence, looking for (η, Y)-periodic eigenfunctions of

A is the same as looking for Y-periodic eigenfunctions of the new ‘shifted’ operator

A(η) = e−iη·yAeiη·y = −

(
∂

∂yk
+ iηk

)
akl(y)

(
∂

∂yl
+ iηl

)
, (1.10)

This is an unbounded operator in L2♯(Y), the space of all L2
loc
(Rd) functions that

are Y-periodic.

The heuristics developed above can be formalized mathematically as follows.

We shall refer to Y as the basic cell for the lattice 2πZd and Y ′ B
[
−
1

2
,
1

2

)d
as the

basic cell for the dual lattice Zd in Rd.



8 Introduction

1. Direct integral decomposition of L2(Rd): Given g ∈ D(Rd), we define its

Gelfand transform as

g♯(y, η) =
∑
p∈Zd

g(y+ 2πp)e−i(y+2πp)·η.

This is a function in the Bochner space L2(Y ′ , L2♯(Y)), which is the space

of all L2♯(Y)-valued maps η ∈ Y ′ 7→ u♯(·, η) such that the norm function

η 7→ ||u♯(η)||L2
♯
(Y) is in L2(Y ′). The map g 7→ g♯ is an isometry from D(Rd),

equipped with the L2-norm, to L2(Y ′ , L2♯(Y)) and hence it may be extended to

a unitary isomorphism from L2(Rd) to L2(Y ′ , L2♯(Y)). The space L2(Y ′ , L2♯(Y))

is the direct integral with the constant fiber
∫⊕
Y
′ L2♯(Y)dη.

2. Direct integral decomposition of A: Then, the operator A in L2(Rd) is

unitarily equivalent to the fibered operator∫⊕
Y
′

A(η)dη

in the Bochner space L2(Y ′ , L2♯(Y)). If u ∈ D(A) and u =
∫
Y
′ u♯(·;η)dη

then u♯ ∈ D(A(η)) and the operator
∫⊕
Y
′ A(η)dη acts on u♯ ∈ L

2(Y
′

, L2♯(Y))

distributively, i.e.,
(∫⊕
Y
′ A(η)dη

)
u♯(·, η) =

∫⊕
Y
′ A(η)u♯(·, η)dη.

3. The spectrum of A is union of the spectra of the shifted operator A(η) as

η varies over Y ′.

This situation is expressed in the commutative diagram below.

L2(Rd)
A−−−→ L2(Rd)yG yG

L2(Y
′

, L2♯(Y))

∫⊕
Y
′ A(η)dη

−−−−−−→ L2(Y
′

, L2♯(Y))

Here, G denotes the Gelfand transform. The proof of these facts may be found

in [RS80, Fel00, Fol16].

1.2.2 Bloch Decomposition

In the previous subsection, the space L2(Rd) was identified with L2(Y ′ ;L2♯(Y)) and

the operator A was identified with a fibered operator. In this subsection, we shall

solve the eigenvalue problem associated with the fibers of the direct integral. These

eigenvalues will be called as Bloch eigenvalues.
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The eigenvalue problem associated to the operator family A(η) is posed in

the space

H1♯(Y) = {ϕ ∈ H1loc(R
d) : ϕ(y+ 2πp) = ϕ(y) a.e. y ∈ Rd, p ∈ Zd}.

The following bilinear form is associated to A(η):

a(η)(u, v) =

∫
Y

akl(y)

(
∂u

∂yl
+ iηl

) (
∂v

∂yk
+ iηk

)
dy.

In order to solve the eigenvalue problem for A(η), we prove that it has a

compact resolvent. We first look at the problem of invertibility, i.e.,

Given f ∈ L2♯(Y), find u ∈ H1♯(Y) satisfying a(η)(u, v) = (f, v) ∀ v ∈ H1♯(Y).

Now, although the bilinear form a(η) is not coercive, a translation of a(η)

in the lowest order is coercive. It will suffice to prove the following Gårding-type

inequality.

Theorem 1.2. There are positive numbers α,β such that for all u ∈ H1♯(Y), the

following equality holds

a(η)(u, u) + α||u||2
L2
♯
(Y)
≥ β||u||2

H1
♯
(Y)
. (1.11)

A proof of a similar inequality in the context of elasticity equation may be found

in [Ros87, BLP11, CPV95]. As a consequence, by the standard spectral theorem

of compact self-adjoint operators, A(η) has an increasing sequence of eigenvalues

and an orthonormal basis of L2♯(Y) composed of corresponding eigenfunctions, for

every η ∈ Y ′. Let (λm(η))
∞
m=1 denote the sequence of increasing eigenvalues for

A(η), counting multiplicity. Let (ϕm(η))
∞
m=1 be the corresponding eigenfunctions.

The functions η 7→ λm(η) are known as the Bloch eigenvalues of the operator A.

They are also often called as band functions. The corresponding eigenfunctions

are called Bloch eigenfunctions. This allows us to further decompose the direct

integral as a diagonalization. In particular, the Bloch transform maps L2(Rd) to

L2(Y
′

, ℓ2(N))

Theorem 1.3. Let g ∈ L2(Rd). Define the mth Bloch coefficient of g by

Bmg(η) B

∫
Rd

g(y)e−iy·ηϕm(y;η) dy, m ∈ N, η ∈ Y
′

. (1.12)

Then, the following inverse formula holds

g(y) =

∫
Y
′

∞∑
m=1

Bmg(η)ϕm(y;η)e
iy·η dη. (1.13)
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Further,

||g||2
L2(Rd)

=

∞∑
m=1

∫
Y
′

|Bmg(η)|
2 dη. (1.14)

For g ∈ D(A),

Bm(Ag)(η) = λm(η)Bmg(η). (1.15)

The proof may be found in [SGV04] and [SGV05].

Now that the Bloch decomposition of the operator A is achieved, we shall

repeat this process to bring about the Bloch decomposition at the ϵ − scale,

i.e., the Bloch decomposition of operator Aϵ = −div(Aϵ(x)∇). This operator is

unitarily equivalent to a direct integral, given by

∫⊕
Y
′
/ϵ

Aϵ(ξ)dξ. (1.16)

We shall denote the eigenvalues and eigenfunctions of Aϵ(ξ) by

(λϵm(ξ), ϕ
ϵ
m(x, ξ))m∈N. The Bloch eigenvalues and Bloch eigenfunctions of A and

Aϵ are related by the following equations.

λϵm(ξ) = ϵ
−2λm(ϵξ), ϕ

ϵ
m(x; ξ) = ϕm(x/ϵ; ϵξ). (1.17)

This yields a Bloch decomposition of L2(Rd) at the ϵ-scale.

Theorem 1.4. Let g ∈ L2(Rd). Define the mth Bloch coefficient of g as

Bϵmg(ξ) B

∫
Rd

g(x)e−ix·ξϕϵm(x; ξ) dx, m ∈ N, ξ ∈ Y
′

/ϵ. (1.18)

Then, the following inverse formula holds

g(x) =

∫
Y
′
/ϵ

∞∑
m=1

Bϵmg(ξ)ϕ
ϵ
m(x; ξ)e

ix·ξ dξ. (1.19)

Further,

||g||2
L2(Rd)

=

∞∑
m=1

∫
Y
′
/ϵ

|Bϵmg(ξ)|
2 dξ. (1.20)

For g ∈ D(Aϵ),

Bϵm(A
ϵg)(ξ) = λϵm(ξ)B

ϵ
mg(ξ). (1.21)
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Then, as a consequence of the representation (1.16), an equation likeAϵuϵ = f,

where f ∈ L2(Rd), can be written as a cascade of equations in the Bloch space, viz.,

λϵ1(ξ)B
ϵ
1(u

ϵ)(ξ) = Bϵ1(f)

λϵ2(ξ)B
ϵ
2(u

ϵ)(ξ) = Bϵ2(f)

...

λϵm(ξ)B
ϵ
m(u

ϵ)(ξ) = Bϵm(f)

...

(1.22)

Now, the homogenization can be achieved by passing to the limit in these equations

in the Bloch space. However, in order to achieve that, more properties of the Bloch

eigenvalues and the Bloch coefficients are required.

1.2.3 Regularity of Bloch waves in the dual variable

By an application of the min-max principle, the Bloch eigenvalues can be proved to

be Lipschitz continuous functions of the dual variable η. The proof may be found

in [CV97].

Theorem 1.5. [CV97] For m ≥ 1, η 7→ λm(η) is a Lipschitz continuous function

of η.

In contrast, there is a good deal of choice present, when it comes to the

eigenfunctions. Wilcox [Wil78] proved that the Bloch eigenfunctions of operators

of the form −∆ + V, where V is periodic, could be chosen measurably and that

they could be chosen to be real analytic outside of a measure zero set. The

Bloch decomposition theorem of the previous section requires that the Bloch

eigenfunctions be measurable in the dual parameter.

These results, however, are insufficient for the proof of homogenization. The

following result pulls us through, a proof of which may be found in [CV97].

Theorem 1.6. [CV97] There is a small ball Bδ(0) such that

• η 7→ λ1(η) is analytic for η ∈ Bδ(0).

• There is a choice of the corresponding eigenvector η 7→ ϕ1(., η) satisfying

η ∈ Bδ(0) 7→ ϕ1(·, η) ∈ H
1
♯(Y) is analytic and

ϕ1(y, 0) = |Y|−1/2, a constant independent of y.
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This theorem depends on the fact that the first eigenvalue of the operator

A is simple, and therefore, remains simple in a neighbourhood of 0. It involves

use of an implicit function theorem in the analytic category and in an infinite

dimensional setup by way of an infinite dimensional determinant. The regularity

of the eigenvectors is a more involved task and makes use of an analytic projection

operator. These results may also be proved by using the Kato-Rellich theorem,

which will be discussed in Section 1.3.

1.2.4 Identification of homogenized tensor

The homogenized tensor and the correctors can be expressed in terms of derivatives

of Bloch eigenvalues and Bloch eigenfunctions. This is the content of the next

theorem, whose proof may be found in [CV97] or [SGV04]. Such calculations are

also performed in [BLP11].

Theorem 1.7. The first Bloch eigenvalue λ1(η) and eigenfunction ϕ1(η) of A

satisfy:

1. λ1(0) = 0.

2. The eigenvalue λ1(η) has a critical point at η = 0, i.e.,

∂λ1

∂ηs
(0) = 0,∀s = 1, 2, . . . , d. (1.23)

3. For s = 1, 2, . . . , d, the derivative of the eigenvector (∂ϕ1/∂ηs)(0) satisfies:

(∂ϕ1/∂ηs)(y; 0) − iϕ1(y; 0)w
s(y) is a constant in y, where ws is defined

in (1.9).

4. The Hessian of the first Bloch eigenvalue at η = 0 is twice the homoge-

nized matrix a∗
kl
:

1

2

∂2λ1

∂ηk∂ηl
(0) = a∗kl. (1.24)

Remark 1.8.

1. It can be seen easily that η 7→ λm(η) are periodic functions with Y ′ as the

basic periodicity cell.

2. The first Bloch eigenvalue is an even function with respect to the origin, i.e.,

λ1(η) = λ1(−η) for all η ∈ Y ′. Equation (1.23) can be seen as a consequence

of this fact.
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1.2.5 Localization and passage to limit

For the purpose of homogenization, we need one more result which describes the

weak limit of the first Bloch coefficient of a sequence of weakly convergent functions.

Theorem 1.9. Let gϵ be a sequence of functions in L2(Rd) with uniform (in ϵ)

compact support in K ⊆ Rd such that gϵ ⇀ g in L2(Rd)-weak for some function

g ∈ L2(Rd). Then it holds that

χϵ−1YB
ϵ
1g
ϵ ⇀ ĝ

in L2loc(R
d
ξ
)-weak, where ĝ denotes the Fourier transform of g.

Now, we note that the homogenized equation will be recovered by passing

to the limit in the first equation in the cascade (1.22) and that the rest of the

equations will not contribute to the limit equation. However, the cascade is written

for an equation posed in Rd. In order to obtain homogenized equation for an

equation posed for a domain Ω ⊆ Rd, we first need to localize it as follows. Let ψ0
be a fixed element in D(Ω). Since uϵ satisfies Aϵuϵ = f in Ω, ψ0uϵ satisfies

Aϵ(ψ0u
ϵ)(x) = ψ0f(x) + h

ϵ
1(x) + h

ϵ
2(x) in Rd, (1.25)

where

hϵ1(x) B −
∂ψ0

∂xk
(x)aϵkl(x)

∂uϵ

∂xl
(x),

hϵ2(x) B −
∂

∂xk

(
∂ψ0

∂xl
(x)aϵkl(x)u

ϵ(x)

)
.

On applying the first Bloch coefficient to the equation (1.25), we obtain the

equation:

λϵ1(ξ)B
ϵ
1(ψ0u

ϵ)(ξ) = Bϵ1(ψ0f)(ξ) + B
ϵ
1h

ϵ
1(ξ) + B

ϵ
1h

ϵ
2(ξ) in Rd. (1.26)

In order to pass to the limit in equation (1.26), we shall expand λϵ
1

as a power

series in a neighbourhood of ξ = 0. Also, the limits of Bϵ
1
hϵ
1

and Bϵ
1
hϵ
2

are identified.

Finally, a limit equation is found in Bloch space. The homogenized equation in

physical space is found by taking the inverse Fourier transform. All of the details

may be found in [CV97].

1.2.6 Error estimates

The passage to limit and recovery of homogenized tensor, as described above, is

part of the qualitative theory of homogenization. Another important aspect of
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homogenization is the quantitative theory, i.e., obtaining rates of convergence for

the L2-convergence of uϵ to u∗, as defined in Theorem 1.1. By making use of the

correctors, the L2-convergence may be updated to H1-convergence by using a better

approximation, uϵ ≈ u∗ + ϵws ∂u
∗

∂xs
.

In the early literature, rates have been obtained for scalar equations by making

use of the maximum principle [BLP11] and the boundedness of correctors due to

De Giorgi-Nash-Moser regularity. Those requirements clearly fail for systems. As

a consequence, it is standard practice to take Hölder continuous coefficients in

the case of systems, so that Schauder theory is applicable. One of the advantages

of Bloch wave homogenization is to obtain such error estimates under optimal

hypotheses on regularity of coefficients.

In the theory of Bloch wave homogenization, error estimates were first ob-

tained in [COV02, COV05] by proposing an approximation different from the one

mentioned above. The authors call this approximation the Bloch approximation

which is defined by

θϵ(x) =

∫
Y
′
/ϵ

û∗(ξ)eix·ξϕϵ1(x; ξ)dξ

and it is proved that |uϵ − θϵ|H1 = O(ϵ).

Error estimates for homogenization have also been obtained by Birman and

Suslina [BS04] in the form of order-sharp resolvent estimates by the spectral

approach, i.e., they use the Bloch decomposition and perturbation theory to obtain

rates of convergences in the full space.

||(Aϵ + I)−1 − (A∗ + I)−1||L2(Rd)→L2(Rd) ≤ Cϵ.

These are also referred to as norm resolvent estimates. Their methods are not

restricted to scalar equations. Further, recently Suslina and co-authors have

obtained operator error estimates in bounded domains as well [PS12, Sus13, Sus17].

These developments have been foreshadowed by [Sev81, Zhi89].

1.2.7 Comments on the Bloch wave method

Bloch wave homogenization has several features that make it ideal to study a wide

variety of physical phenomena. These features include

1. Bloch wave homogenization has allowed the interpretation of homogenization

as a spectral threshold phenomena [BS04]. This has been very fruitful as it

has led to the notion of internal edge homogenization [BS06].
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2. In the case of a multiple spectral edge, such as elasticity operator [SGV05],

Stokes system [AGV17], the homogenized tensor appears through a relation

called the propagation condition involving directional derivatives of the

Bloch eigenvalues. This may be interpreted as follows: the directional

Hessian gives the speed of propagation of waves in the homogenized medium

in corresponding directions. Such an interpretation is not forthcoming in

other methods of homogenization for system of equations.

3. In long time asymptotics for the heterogeneous wave equation, the fourth

order derivative of the first Bloch eigenvalue at 0, called the dispersion tensor,

plays an important role [COV06]. This leads to a fourth order equation for

the homogenized medium [DLS14, ABV16]. The dispersion tensor differs

from the fourth order tensor that appears by way of the two-scale asymptotic

expansions [ABV16].

4. The homogenized tensor appears in a more natural manner in this framework

as the second order coefficient in the power series expansion of the first Bloch

eigenvalue at ξ = 0. This is even more striking in the setting of critical

sized perforated domains where the so-called “strange term” [DOS09] appears

through the first order term in the power series expansion of the first Bloch

eigenvalue at ξ = 0.

5. The passage to limit in homogenization is greatly simplified in this framework.

In particular, the homogenization limit is obtained as a weak limit of the

Bloch transformed equation, which is an algebraic equation instead of a

differential equation [CV97].

6. It opens up avenues of research into the interaction of homogenization theory

with other physical phenomena such as creation of spectral gaps [Zhi04], non-

locality [MCFK, CC16], resonance [CEK19], Anderson localization [Ves02],

etc.

7. The operator error estimates in [Sus13] do not require Hölder continuity

of the coefficients. This is relevant because microstructures that appear in

applications are not expected to have any regularity. In fact, the simple

configuration of two-phase media is only measurable and bounded.
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1.3 Parametrized eigenvalue problems

In this section, we treat Bloch wave homogenization as a gateway to eigenvalue

problems involving multiple parameters. Eigenvalue problems, that depend on

multiple parameters, arise in a variety of mathematical models, for example, Bloch

waves (Solid State Physics), Hyperbolic systems of PDEs (Wave motion), etc.

Parametrized eigenvalue problems have been studied by Rellich and Kato under

the heading of Perturbation Theory. Sometimes, it is also studied as Bifurcation

Theory. We saw in Theorem 1.6 that the first Bloch eigenvalue is analytic in a

neighbourhood of η = 0. Such a theorem is proved by appealing to perturbation

theory. In this section, we shall discuss some finer points related to perturbation

theory.

Generally speaking, the regularity of the family of operators is not transferred

to the eigenvalues and eigenvectors. When a family of self-adjoint operators depends

analytically on one real or complex variable, Rellich [Rel69] has proved that there

exists an arrangement of the eigenvalues which is analytic. This arrangement does

not correspond to the usual increasing order of eigenvalues unless the eigenvalue,

in question, is simple. The analytic eigenvectors, so obtained, also only correspond

to the specific arrangement of eigenvalues obtained from the theorem. When we

go to families of operators depending on multiple parameters, we may not have

analyticity unless the eigenvalue(s) are simple, i.e., analyticity may be lost at the

points of eigenvalue crossings.

Let us illustrate these phenomena using some examples. Consider the simplest

one-dimensional family of matrices, viz.,x 0

0 −x

 , x ∈ R.
The ordered eigenvalues are known to be |x| and −|x|. These, however, are not even

differentiable. Rellich comes to the rescue, and the rearranged eigenvalues x and

−x are analytic. The corresponding eigenvectors (1 0)T and (0 1)T are constant,

therefore, analytic. We cannot choose the eigenvectors to be a certain vector at

x = 0. Clearly, at x = 0, any vector would be an eigenvector of the given matrix.

But, a prescribed eigenvector at 0 cannot be continued for other values of x. As

Rellich points out, “the perturbation method itself selects them.”

As an example with multiple parameters, considerx y

y −x

 , x, y ∈ R.
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The ordered eigenvalues are known to be
√
x2 + y2 and −

√
x2 + y2, and no

arrangement of these would make them differentiable around 0.

In the next subsection, we review how simplicity assures us of regularity of

the eigenpairs.

1.3.1 Simplicity implies Analyticity

One situation where the number of parameters is immaterial for obtaining regularity

of eigenvalues is when the eigenvalues are simple. The main tool for the proof is

the implicit function theorem in various categories. Implicit function theorem is a

local result and any proof following from that premise will only be local in nature.

We shall begin by proving such a result in finite dimensions.

Theorem 1.10. Let A(t) be a continuously differentiable square matrix val-

ued function of real variable t. Suppose that A(0) has an eigenvalue λ0 of

multiplicity one. Then, for t small enough, A(t) has an eigenvalue λ(t) that

depends differentiably on t, such that λ(0) = λ0. Further, an eigenvector x(t)

corresponding to λ(t) can be chosen to depend on t differentiably.

Proof. The characteristic polynomial of A(t) is det(sI−A(t)) = p(s, t) is a poly-

nomial of degree n with C1 coefficients. The eigenvalue λ0 at 0 is simple. Therefore,

p(λ0, 0) = 0 and ∂p

∂s
(λ0, 0) , 0. By application of the Implicit function theorem, there

is a C1 function λ(t) defined in a neighbourhood of 0, that satisfies p(λ(t), t) = 0.

Eigenvector may be constructed locally, using appropriate minors of A(t). □

Moving on to unbounded self-adjoint operators with compact resolvent on

infinite dimensional Hilbert spaces, there are conditions under which we can define

an infinite dimensional version of the determinant. This is an analytic function

with zeros corresponding to the eigenvalues and the multiplicity preserved. This

should be reminiscent of the Weierstrass factorization theorem which involves

constructing an analytic function with a prescribed set of zeros. The theory holds

for Hilbert-Schmidt operators and even for the class In, which comprises of compact

operators whose singular values are in the sequence space ℓn. Such a construction

can be found in [Sik61b], [Sik61a], [Smi41], [RS78], [GK69], [DS88], among others.

The rest of the proof follows in like fashion. The construction of eigenvectors could

also be done using the infinite dimensional version of determinant and its minors.

However, one could also make use of the projection operator onto the subspace

spanned by the first eigenvalue in a neighbourhood of 0. Such a projection operator
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can be defined using a version of residue calculus. Specifically, for a closed operator

A, if λ is an isolated point of the spectrum σ(A), the integral

Pλ = −
1

2πi

∮
|λ−µ|=r

(A− µ)−1dµ

exists, where r is the radius of a circle containing λ alone [RS78, p. 11]. For an

analytic family of operators A(η), the family of projection operators, Pλ(η), is also

analytic and if the eigenspace is one-dimensional, we obtain an analytic choice of

eigenvectors by defining ϕ(y, η) = Pλ(η)ϕ(y, 0). This can be further normalized

according to needs.

1.3.2 Single Parameter implies Analyticity

Simplicity is not the only criteria for regularity of eigenfunctions. If the family of

operators depends on a single parameter, Rellich [Rel69] proves the following.

Theorem 1.11 (Rellich). The eigenvalues of a Hermitian matrix akl(x), whose

coefficients are power series for small |x|, can be rearranged to be power series

for small |x|.

This result uses the concept of a Puiseux Series and the Hermitian hypothesis

cannot be removed. Further, analytic eigenvectors can be constructed for the

corresponding eigenvalues. As mentioned before, we cannot decide an initial value

for the eigenvectors (at 0).

This result is extended for operators over infinite dimensional Banach spaces

in Kato’s treatise [Kat95]. Kato begins by defining two types of operator families.

Definition 1.12 (Kato). Let R be a connected open set in the complex plane and

let T(z), a closed operator with nonempty resolvent set, be given for each z ∈ R.

We say that T(z) is an analytic family of type A if

1. The operator domain A(z) is some set D independent of z.

2. For each ψ ∈ D, A(z)ψ is a vector valued analytic function of z.

Definition 1.13. Suppose that a(z) is a family of bounded sesquilinear forms

with domain H for each z ∈ D0, where D0 is a connected open set in C, and that

a(z)[u] is holomorphic in D0 for each fixed u ∈ H. Such a family {a(z)} is called

bounded-holomorphic.

The family of operators A(z) ∈ B(H) defined by (A(z)u, v) = a(z)[u, v] is a

bounded-holomorphic family of operators.
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Definition 1.14. The numerical range of a form a is defined as Θ(a) = {a[z] : z ∈

D(a), ||z|| = 1}.

It is defined analogously for operators.

Definition 1.15.

1. The form a on H is called sectorial if there are numbers c ∈ R and θ ∈ [0, π/2)

such that

Θ(a) ⊂ Sc,θ := {λ ∈ C : | arg(λ− c)| ≤ θ)}.

2. The operator A is called sectorial, if Θ(A) ⊂ Sc,θ for some c ∈ R and

θ ∈ [0, π/2).

3. The operator A is said to be m-sectorial if Θ(A) ⊂ Sc,θ and if A is closed

and R(A− αI) is dense in H, where α ∈ C \ Sc,θ. We call c a vertex and θ a

corresponding semi-angle.

Definition 1.16 (Kato). a(z) is called a holomorphic family of type (a) if

1. each a(z) is sectorial and closed with domain D independent of z and dense

in H,

2. a(z)[u] is holomorphic for z ∈ D0 for each u ∈ D.

Kato [Kat95, p.395] proves that a holomorphic family of type (a) generates a

family of m−sectorial operators. These are called as a holomorphic family of

type B.

Finally, for the two types of operator families, he proves the following regularity

theorem, mirroring Rellich’s result for matrices.

Theorem 1.17 (Kato). Let A(x) be a self adjoint holomorphic family of type

A or B defined for x in a neighborhood of an interval I0 ⊂ R. Furthermore, let

A(x) have compact resolvent. Then all eigenvalues of A(x) can be represented

by functions which are holomorphic on I0. More precisely, there is a sequence

of scalar-valued functions µn(x) and a sequence of vector-valued functions

ϕn(x), all holomorphic on I0, such that for x ∈ I0, the µn(x) represent all the

eigenvalues of A(x) counting multiplicities and the ϕn(x) are the corresponding

eigenfunctions which form a complete orthonormal family in the underlying

Hilbert space.

For results of a similar kind and with different regularity, for example, Hölder

continuity and for non-selfadjoint operators, see papers from Rainer and coau-

thors [Rai11, Rai13, Rai14, KM03, KMR12, AKML98, LR07].



20 Introduction

1.3.3 Genericity of Simple Eigenvalues

Multiple parameters are unavoidable in most applications of interest such as

propagation of singularities for hyperbolic systems of equations with multiple char-

acteristics leading to novel phenomena such as conical refraction [Lax82], [Den88],

stability of hyperbolic initial-boundary-value problems [MZ05] and Bloch waves

for elasticity system [BS04], [SGV05]. In such situations, Rellich and Kato’s result

may not always be applicable (although a successful application for elasticity

system is brought about in [SGV05]). Hence, an assumption of simplicity is useful

in applications [ACP+04], [APR11], [APR13]. Even though the original problem

might not involve simple eigenvalues, it is often true that a small perturbation of

the original problem has simple eigenvalues. A property depending on a parameter

in a topological space X is said to be generic in X if the set of parameters on which

it does not hold is of first category in X. In particular, a generic property holds

densely in X. In the literature, it has been shown that under perturbations of

some relevant parameters like domain shape, coefficients, potentials etc, a multiple

eigenvalue can be made simple. Below we review some results of this kind.

Albert [Alb75] proves that the eigenvalues of a linear self-adjoint elliptic

differential operator on a compact smooth manifold are generically simple under

perturbation of lowest order term.

Theorem 1.18 (Albert). Let M be a compact, connected C∞ manifold and L a

linear, self-adjoint, elliptic differential operator on M with C∞ coefficients.

Let An be the set of all p ∈ C∞(M) such that the first n eigenvalues of L+ p

are simple. Then for every m ∈ N, Am is open in C∞(M) and each Am+1 is

dense in Am. Therefore, the set of all p ∈ C∞(M) such that the eigenvalues of

L+ p are simple, is generic in C∞(M).

Making use of infinite dimensional versions of Sard’s Theorem, Uhlen-

beck [Uhl76] proves similar results.

Theorem 1.19 (Uhlenbeck). Let Mn be a compact n-manifold and let Lb be a

family of self-adjoint elliptic operators on Mn with the parameter b ∈ U an

open subset of a Banach space B. Suppose that the coefficients of Lb are Ck

for large enough k, then the following properties are generic in B

1. Lb has one-dimensional eigenspaces.

2. zero is not a critical value of the eigenfunctions, restricted to the interior

of the domain of the operator;
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3. the eigenfunctions are Morse functions on the interior of M.

Generic simplicity of the spectrum with respect to domain has been established

and applied in proving stabilizability and controllability results for the plate

equation [OZ00] and the Stokes system in two dimensions [OZ01] by Ortega and

Zuazua.

Therefore, we expect that a multiple Bloch eigenvalue can be made simple by

a perturbation in coefficients of the operator A.

1.4 Regularity of spectral edges

The previous subsections deal with the analytic structure of the Bloch spectrum of

the periodic operator A. In this subsection, certain geometrical and topological

aspects of the Bloch spectrum will be revealed through the notion of spectral edges,

spectral gaps and eigenvalue crossings.

Recall that the mth Bloch eigenvalue of the operator A is denoted by λm(η).

Let σ−
m = min

η∈Y
′
λm(η) and σ+

m = max
η∈Y

′
λm(η), then, the spectrum of the operator A

is given by
⋃
m∈N[σ

−
m, σ

+
m]. Therefore, it is a union of closed intervals, which may

overlap. However, it may also be written as [0,∞) \ ⊔N
j=1(µ

−
j
, µ+

j
), where N takes

values in N ∪ {∞}. The pairwise disjoint intervals (µ−
j
, µ+

j
) are known as spectral

gaps and (µ±
j
)N
j=1 are known as spectral edges. The schematic diagram in Fig. 1.3

shows that not every σ±m may be a spectral edge, even though the corresponding

Bloch eigenvalue is simple.

The Bloch eigenvalues are functions of the dual parameter η. The dependence

of the Bloch eigenvalues and eigenfunctions on the parameter η has been addressed

in Section 1.3 where we noted that the study of parametrized eigenvalue problems

is an active area of research, even in finite dimensions [AKML98], [Rai14]. How-

ever, we will see that such questions regarding regularity properties of the Bloch

eigenvalues in the parameter are also important in applications. In particular, the

behaviour of the Bloch eigenvalues near a spectral edge determines a variety of

physical phenomena; such as, in the theory of effective mass [AP05], Bloch wave

method in homogenization [CV97] and Anderson localization [Ves02].

The importance of these regularity properties has led to the following con-

jectures about a spectral edge, that are expected to hold either for all relevant

physical parameters or in a generic sense:

(R1) The spectral edge must be simple, i.e., it is attained by a single Bloch

eigenvalue.
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Figure 1.3: Bloch eigenvalues λ4 and λ5 are simple, but have no spectral gap

between them.
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(R2) The spectral edge must be isolated, i.e., it is attained at finitely many points

in Y ′ by a Bloch eigenvalue.

(R3) The spectral edge must be non-degenerate, i.e., for some m, r ∈ N, if the

Bloch eigenvalue λm(η) attains the spectral edge λ0 at the points {ηj}rj=1, then

the Bloch eigenvalue must satisfy, for j = 1, 2, . . . , r,

λm(η) − λ0 = (η− ηj)
TBj(η− ηj) +O(|η− ηj|

3), for η near ηj,

where Bj are positive definite matrices.

While these features are readily available for the lowest Bloch eigenvalue

corresponding to the divergence-type scalar elliptic operator, these properties may

not be available for other spectral gaps of the same operator [Kuc16]. However,

the following results are available regarding these properties:

• Klopp and Ralston [KR00] proved the simplicity of a spectral edge of

Schrödinger operator −∆+ V under perturbation of the potential term.

• In two dimensions, spectral edges of a wide class of periodic elliptic operators

are known to be isolated [FK18].

• Also, in two dimensions, a degenerate spectral edge of a Schrödinger operator

can be made non-degenerate through a perturbation with a potential having

a larger period [PS17].

The validity of hypotheses (R1), (R2), (R3) is usually assumed in

the literature [Kuc16]; for example, in establishing Green’s function asymp-

totics [KR12], [KKR17], for internal edge homogenization [BS06] and to establish

localization for random Schrödinger operators [Ves02]. Local simplicity of Bloch

eigenvalues is assumed in the study of diffractive geometric optics [APR11], [APR13]

and homogenization of periodic systems [ACP+04].

1.5 Internal edge homogenization

A major contribution of Birman and Suslina [BS04] to the theory of homogenization

is its interpretation as a spectral threshold effect. For the operator A, it is known

that inf σ(A) = 0. This corresponds to the bottom edge of its spectrum. A

non-zero spectral edge is called an internal edge. The notion of homogenization
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has been extended to internal edges in [Bir04], [BS06]. Correctors for internal edge

homogenization are further developed in [SK09], [SK11].

In this subsection, we review the internal edge homogenization theorem of

Birman and Suslina [BS06]. Consider the equation

−∇ ·
(
A

(
x

ϵ

)
∇uϵ

)
+ ϑ2uϵ = f in Rd, (1.27)

corresponding to the operator Aϵ. Let λ0 denote an internal edge, corresponding

to the upper endpoint of a spectral gap of A and let m be the smallest index such

that the Bloch eigenvalue λm attains λ0, then

λ0 = min
η∈Y

′
λm(η).

Birman and Suslina [BS06] make the following regularity assumptions on λ0.

These are exactly the properties of a spectral edge that are required in order to

define effective mass in the theory of motion of electrons in solids [FK18].

(B1) λ0 is attained by the mth Bloch eigenvalue λm(η) at finitely many points

η1, η2, . . . , ηN.

(B2) For j = 1, 2, . . . ,N, λm(η) is simple in a neighborhood of ηj, therefore, λm(η)

is analytic in η near ηj.

(B3) For j = 1, 2, . . . ,N, λm(η) is non-degenerate at ηj, i.e.,

λm(η) − λ0 = (η− ηj)
TBj(η− ηj) +O(|η− ηj|

3), for η near ηj,

where Bj are positive definite matrices.

Under these assumptions, the internal edge homogenization theorem is proved.

Theorem 1.20 [BS06]. Let A be the operator in L2(Rd) defined by (1.1) and let

λ0 be an internal edge of the spectrum of A. Let ϑ2 > 0 be small enough so that

λ0−ϑ
2 is in the spectral gap of A. Assume conditions (B1), (B2), (B3). Let Aϵ

denote the unbounded operator −∇ ·
(
A( x

ϵ
)∇

)
defined in L2(Rd). For 1 ≤ j ≤ N,

let ψj(y, ηj) B exp(iy · ηj)ϕj(y), where ϕj is the eigenvector corresponding to

the eigenvalue λ0 = λm(ηj) of the operator A(ηj) = −(∇+ iηj) ·A(∇+ iηj). Then,

||R(ϵ) − R0(ϵ)||L2(Rd)→L2(Rd) = O(ϵ) as ϵ→ 0, where

R(ϵ) =
(
Aϵ − (ϵ−2λ0 − ϑ

2)I
)−1

and

R0(ϵ) B|Y|

N∑
j=1

[ψϵj ]
(
−∇ · Bj∇+ ϑ2I

)−1
[ψϵ

j
]

are bounded operators on L2(Rd) and || · ||L2(Rd)→L2(Rd) denotes the operator

norm. Here, [f] denotes the operation of multiplication by the function f.
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1.6 Almost periodic homogenization

For K = R or C, let Trig(Rd;K) denote the space of all K-valued trigonometric

polynomials of the form P(y) =

N∑
j=1

aje
iy·ηj, defined for y ∈ Rd.

Definition 1.21. A bounded continuous function u : Rd → R is said to be

uniformly almost periodic if it is the uniform limit of a sequence of real trigonometric

polynomials, i.e., there exists a sequence Pn(y) ∈ Trig(Rd;R) such that ||u−Pn||∞ →
0 as n→ ∞.

Uniformly almost periodic functions are also known as Bohr almost periodic

functions. The set of all Bohr almost periodic functions when equipped with the

uniform norm is a Banach space denoted by AP(Rd).

Definition 1.22. The mean value of a function u : Rd → R in L1loc(R
d) is the

following limit

M(u) = lim sup
L→∞

1

|YL|

∫
YL

u(y) dy, (1.28)

where YL = [−πL, πL)d and | · | denotes its Lebesgue measure.

In fact, the limsup above is a limit for Bohr almost periodic functions [Bes55].

One can obtain the following class of functions by employing the notion of mean

value. This class is larger than Bohr almost periodic functions.

Definition 1.23. A function u ∈ L2loc(R
d;C) is said to be Besicovitch almost

periodic if there exists a sequence Pn ∈ Trig(Rd;C) such that M(|u− Pn|
2) → 0 as

n→ ∞.

On the set of all Besicovitch almost periodic functions, the quantity (M(|·|2))1/2

is a semi-norm. Given Besicovitch almost periodic functions f and g, we shall

identify them if M(|f− g|2) = 0 to obtain a Hilbert space which will be denoted

by B2(Rd) with the inner product given by M(f · g). The superscript 2 serves to

remind us that one could very well define a Besicovitch analogue of Lp spaces.

Let us recall some interesting properties of almost periodic functions. In

direct analogy with periodic functions, one can define a formal Fourier series for

almost periodic functions [Bes55]. The trigonometric factors eiy·η that appear

in the Fourier series of an almost periodic function u correspond to all η ∈ Rd

for which M(ue−iy·η) is non-zero. Note that for a given function u, the set of

all such η is countable. This set is called the set of frequencies of u and the

Z-module generated by these frequencies is denoted as Mod(u). Periodic functions
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are also almost periodic. In particular, continuous periodic functions belong to

AP(Rd) whereas measurable and bounded periodic functions belong to Bp(Rd)

for all p such that 1 ≤ p < ∞. Further, the mean value as defined in (1.28)

coincides with the average or mean value of periodic functions over any basic cell

of periodicity. Almost periodic functions u with a finitely generated Mod(u) are

called quasiperiodic functions. It is interesting to note that AP(Rd) and B2(Rd) are

examples of non-separable Banach spaces. More information about these function

spaces may be found in [Bes55, LZ82, Cor09]. Further, a short but illuminating

crash course on almost periodic functions may be found in [Shu78].

1.6.1 Almost Periodic Differential Operators

Consider the almost periodic second-order elliptic operator in divergence form

given by

Au := −div(A∇u) = −
∂

∂yk

(
akl(y)

∂u

∂yl

)
, (1.29)

where the coefficients satisfy the assumptions (A1), (A2), (A3). Further, in this

section, the coefficients akl are also assumed to be uniformly almost periodic, i.e.,

akl ∈ AP(R
d).

Let Ω be an open set in Rd. We are interested in the homogenization of the

following equation posed in H1(Ω)

Aϵuϵ := −
∂

∂xk

(
aϵkl (ϵ)

∂uϵ

∂xl

)
= f, (1.30)

where f ∈ L2(Ω) and aϵ
kl
(ϵ) B akl

(
x
ϵ

)
.

Homogenization of almost periodic media was first carried out by Ko-

zlov [Koz78] using quasiperiodic approximations. Subsequently, an abstract ap-

proach was given in [OZ82, JKO94] which we now describe.

1.6.2 Cell Problem for Almost Periodic Media

We begin by introducing the cell problem for almost periodic operator A. Consider

the set S = {∇ϕ : ϕ ∈ Trig(Rd;R)} as a subset of (B2(Rd))d, the Hilbert space of

all d-tuples of B2(Rd) functions. Let W denote the closure of S in (B2(Rd))d. Let

U = (u1, u2, . . . , ud) ∈W and V = (v1, v2, . . . , vd) ∈W. On W, define the bilinear

form

a(U,V) BM(AU · V). (1.31)
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Then clearly the bilinear form a is continuous and coercive on W. Let ξ ∈ Rd.

Define a linear form on W by

lξ(V) B −M(Aξ · V), (1.32)

for V ∈ W. The linear form lξ is continuous on W. As a consequence, by Lax-

Milgram lemma, the problem

a(Nξ, V) = lξ(V), ∀V ∈W (1.33)

has a solution Nξ ∈W.

1.6.3 Homogenization of almost periodic operators

Suppose that uϵ converges weakly to a limit u∗ ∈ H1(Ω). Then, u∗ satisfies

A∗u := −
∂

∂xk

(
q∗kl (x)

∂u

∂xl

)
= f, (1.34)

where the homogenized coefficients q∗
kl

for Aϵ are given by

q∗kl =M (ek ·Ael + ek ·AN
el) , (1.35)

where ei denotes the unit vector in Rd with 1 in the ith place and 0 elsewhere. A

proof of this result may be found in [OZ82, JKO94]. However, the existence of

almost periodic correctors is a difficult problem and only gradient of the corrector

Nξ is found in this abstract approach. Kozlov [Koz78] has proved the existence

of correctors under the assumption of small divisors condition and used them to

prove a rate of convergence result. Often, a penalized version of the cell problem

is employed to obtain convergence rates [She15, SZ18]. Recently, Shen and his

collaborators have proved the existence of bounded correctors for a wide class of

almost periodic media using a quantification of almost periodicity [AGK16, AS16].

1.7 Our contributions

In our work, we recognized two difficulties associated with Bloch wave method:

1. Regularity of Spectral Edges: Many applications of Bloch waves require

regularity of spectral edges, i.e., it requires that spectral edges be simple,

isolated and non-degenerate. These properties may not be available for lowest

edges of systems of partial differential operators, such as elasticity system

where the bottom spectral edge has multiplicity 3, and for internal edges



28 Introduction

of scalar operators [Kuc16]. At lowest edges, these difficulties have been

circumvented by the use of one-parameter perturbation theory [Kat95] by

Birman-Suslina [BS04] and Sivaji Ganesh-Vanninathan [SGV05], etc. It is

not clear whether directional regularity can be applied to the case of internal

edges.

2. Structural Restriction: The direct integral decomposition, on which Bloch

wave method is based, is restricted to periodic operators. Although certain

spectral tools seem to exist in the noncommutative geometry literature [BT81],

this apparatus is known to be difficult and it is not clear whether it will lead

to new computational techniques and quantitative results. However, given the

widespread use of Bloch wave methods in physics literature, Tartar [Tar09]

feels it may be extended to aperiodic media. Such a goal is indeed attainable

as has been shown by the extension of the Bloch wave method to Hashin-

Shtrikman structures [BCG+16, BCG+18].

The present thesis develops the Bloch wave method in these directions. In

particular, we have worked on the spectral theory of periodic differential operators

in order to develop tools that would allow us to establish homogenization results

in the presence of multiple spectral edges. Further, in order to move beyond

periodicity, we have used periodic approximations to almost-periodic operators in

Bloch wave method to obtain homogenization results. This has also allowed us

to explore approximations of homogenized tensors of almost periodic media and

establish certain rate of convergences for these approximations. We will now explain

our contributions in more detail. The results of Subsections 1.7.1, 1.7.2, 1.7.3 may

be found in the preprint [1] which has been accepted for publication in Asymptotic

Analysis. The results of Subsection 1.7.4 may be found in the arXiv preprint [2].

The results of Subsection 1.7.5 may be found in the arXiv preprint [3].

1.7.1 Genericity results on Bloch spectrum

In Section 1.3, we recalled some genericity results about spectrum of compact

operators. In this thesis, we generalize Albert’s result to the spectrum of periodic

operators in two ways.

Theorem A. Let η0 ∈ Y
′. The eigenvalues of the shifted operator (1.10) A(η0)

are generically simple with respect to the space of all coefficient matrices A

that are measurable, bounded and positive definite.
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In the theorem above, we overcome the following difficulties:

1. Theorem A is an extension of the theorem of Albert [Alb75] where the

potential V is the quantity of interest. For applications in the theory of

homogenization, the periodic matrix A in the divergence type elliptic operator

−∇ · (A∇) is of physical importance. Thus, the perturbation is sought in the

second-order term as opposed to the zeroth-order term in [Alb75].

2. Albert’s result is applicable to operators with discrete spectrum, whereas a

periodic operator typically has no eigenvalues. However, the spectrum may

be analyzed through Bloch eigenvalues which introduces an extra parameter

η ∈ Y
′ to the problem. Hence, the method of Albert is applied in a fiberwise

manner.

3. The fiber A(η) is an operator with complex-valued coefficients. The determi-

nation of real-valued perturbation for the shifted operator A(η), which has

complex-valued coefficients, poses additional difficulties, when coupled with

the lack of regularity of the coefficients which the applications demand.

Further, by applying fiberwise perturbation on the fibered operator∫⊕
Y
′ A(η)dη, we can make sure that the corresponding eigenvalue of interest is

simple for all parameter values.

Theorem B. Let m ∈ N. Let λm(η) be the mth Bloch eigenvalue of the

operator A = −∇ · (A∇), where A satisfies (A1), (A2), (A3) and the entries

of A are periodic. There exists an operator Ã, unitarily equivalent to the

operator
∫⊕
Y
′ (A(η) + B(η)) dη, such that the perturbed eigenvalue λ̃m(η) is

simple for all η ∈ Y ′. The perturbation
∫⊕
Y
′ B(η)dη has the form B(η) =

−(∇ + iη) · (B(η)(∇ + iη)), where the coefficients B(η) ∈ L∞♯ (Y) are piecewise

constant in Y ′ and may be chosen as small as desired in the L∞-norm.

While Theorem B achieves global simplicity for a Bloch eigenvalue, the

perturbed operator is no longer a differential operator, i.e., it is non-local.

1.7.2 Simplicity of spectral edges

In Section 1.4, we reviewed the literature about regularity of spectral edges. We

prove the following theorem concerning simplicity of spectral edges.

Theorem C. Let the matrix A satisfy (A1), (A2), (A3). Also, assume that

the entries of A are periodic. Let λ0 correspond to the upper edge of a spectral
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gap of A and let m be the smallest index such that the Bloch eigenvalue λm
attains λ0. Suppose that either

(i) the entries of A belong to the class W1,∞
♯ (Y,R), or

(ii) the spectral edge λ0 is attained by λm(η) at finitely many points.

Then, there exists a matrix B with L∞♯ (Y,R)-entries and t0 > 0 such that for

every t ∈ (0, t0], a spectral edge is achieved by the mth Bloch eigenvalue of the

operator Ã = −∇ · (A + tB)∇ and the spectral edge is simple. An analogous

statement holds for the lower edge of the spectral gap.

Our theorem differs from previous works in the following respects. Simplicity

of spectral edge under perturbation has been proved for Schrödinger operators by

Klopp and Ralston [KR00]. These perturbations are applied in the lowest order

term whereas our perturbation is in the second order. Klopp and Ralston make use

of De Giorgi-Nash-Moser regularity for the Bloch eigenfunction in an essential way.

The regularity theorem does not extend to derivatives of the eigenfunctions. As a

consequence, the proof of Klopp and Ralston could only be successfully applied to

second order perturbations provided we had more regularity for the coefficients,

W1,∞ or C0,α. However, this excess regularity is not suitable for applications in

the theory of homogenization where coefficients are typically only measurable and

bounded. We are able to relax the regularity requirement to L∞ coefficients by

imposing an extra hypothesis that the spectral edge is attained at finitely many

points. Recall that this is one of the defining conditions of regularity of spectral

edge. Therefore our theorem illustrates the importance of regularity.

1.7.3 Applications to internal edge homogenization

We also prove a theorem on norm-resolvent convergence estimates in L2(Rd) for

homogenization of Aϵ at an internal (i.e. non-zero) multiple spectral edge. We will

see that this estimate depends on the shape and structure of the spectral edge which

is typically assumed to be regular [BS06]. We impose some assumptions on shape

and structure of a multiple spectral edge. This theorem illustrates a situation

where perturbation theory may be applied in order to obtain homogenization

results. The shape and structure of an internal edge is largely unknown and it is

expected to be known only through experiments unlike the case of the lowest edge

which is known to be regular.
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1.7.4 Bloch approach to almost periodic homogenization

Bloch wave homogenization through periodic approximations

The assumption of periodicity in homogenization has many advantages: a variety of

tools are available, rates of convergence are easy to obtain, periodic media is easier to

design. However, non-periodic media occurs in nature, such as glass, quasicrystals,

and many physical effects may not be explained solely through periodicity. Bloch

wave method relies on direct integral decomposition of periodic operators. For

almost periodic operators, a suitable direct integral decomposition is not available.

To overcome this difficulty, we make use of periodic approximations, which are

defined by a “restrict and periodize” operation, employed earlier by Bourgeat

and Piatnitski [BP04] for random homogenization. Further, the approximations

introduce varying Hilbert spaces to the problem, which are handled by working in

the Besicovitch space of almost periodic functions.

First Step: The first step in our procedure is the approximation of almost

periodic functions using periodic functions. This is done by the “restrict and

periodize” procedure as developed in [BP04]. We propose periodic approximations

of the operator

Au := −div(A∇u) = −
∂

∂yk

(
akl(y)

∂u

∂yl

)
, (1.36)

where the entries of A are Bohr almost periodic. For R > 0, we denote by AR the

periodic approximation of A at level R, defined as AR = (aR
kl
(y)) = (akl(y)) for

y ∈ YR B [0, 2πR)d, and aR
kl
(y+ 2πRp) = akl(y) for p ∈ Zd. The following operator

will serve as the periodic approximation to A.

ARu := −div(AR∇u) = −
∂

∂yk

(
aRkl(y)

∂u

∂yl

)
. (1.37)

Second Step: The second step is to develop the Bloch wave apparatus for (1.37).

Let λRn(η), ϕRn(η) denote the Bloch eigenvalue and eigenvectors of the operator (1.37).

Then, the homogenized tensor aR,∗
kl

for the operator

AR,ϵu := −div(AR,ϵ∇u) = −
∂

∂xk

(
aRkl(x/ϵ)

∂u

∂xl

)
. (1.38)

is given by

aR,∗kl =
1

2

∂2λR
1

∂ηk∂ηl
(0). (1.39)

Third Step: The third step is to achieve homogenization for the equation

Aϵuϵ := −div(Aϵ∇uϵ) = −
∂

∂xk

(
akl(x/ϵ)

∂uϵ

∂xl

)
= f. (1.40)
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This task is performed by first writing equation (1.40) in Bloch space. Let ψ0 be a

fixed element in D(Ω) with support K. Since uϵ satisfies Aϵuϵ = f, ψ0uϵ satisfies

AR,ϵ(ψ0u
ϵ)(x) = ψ0f(x) + g

ϵ(x) + hϵ(x) + lR,ϵ(x) in Rd, (1.41)

where

gϵ(x) B −
∂ψ0

∂xk
(x)aϵkl(x)

∂uϵ

∂xl
(x), hϵ(x) B −

∂

∂xk

(
∂ψ0

∂xl
(x)aR,ϵkl (x)u

ϵ(x)

)
,

lR,ϵ(x) B −
∂

∂xk

(
ψ0(x)

(
aR,ϵkl (x) − a

ϵ
kl(x)

) ∂uϵ
∂xl

(x)

)
.

Bloch wave homogenization is achieved by passing to the limit in equation (1.41)

first as ϵ goes to 0, followed by R→ ∞.

An interesting result that we have proved is a module containment result

for the approximate correctors. An abstract approach to the cell problem for

almost periodic media was given in [JKO94] which was described in Section 1.6.

Therefore, for periodic media (which forms a subclass of almost periodic media)

there are two possible variational formulations (1.9), and (1.33). It is natural to ask

whether these two cell problems are consistent. We prove this through the module

containment result, which may be paraphrased to say that the frequencies of the

correctors are generated from the frequencies of the coefficients of the operator.

Approximations of homogenized tensor

It was proved in [BP04] that the approximate homogenized tensors aR,∗
kl

(1.39)

converge to the homogenized tensor q∗
kl

(1.35) of almost periodic operator. Although

we are unable to provide a convergence rate for the approximations through

periodizations, we prove a rate of convergence result for Dirichlet approximations

to the homogenized tensor.

The following is its Dirichlet approximation, which is the truncation of (1.35)

on a cube YR = [−πR, πR)d of side length 2πR. Given ν ∈ Rd, find wR,D,ν ∈ H1
0
(YR)

such that

−∇ ·A(ν+ ∇wR,D,ν) = 0. (1.42)

Then Dirichlet approximation AR,D,∗ =
(
aR,D,∗
kl

)
to the homogenized tensor is defined

by

aR,D,∗kl BMYR

akl + d∑
j=1

akj
∂wR,D,el

∂yj

 . (1.43)
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For a matrix A with entries in AP(Rd), define the following modulus of almost

periodicity:

ρ(A, L) B sup
y∈Rd

inf
|z|≤L

||A(·+ y) −A(·+ z)||L∞(Rd). (1.44)

It follows that A is almost periodic if and only if ρ(A, L) → 0 as L→ ∞. We prove

the following theorem on the rate of convergence.

Theorem D. Let ρ satisfy ρ(A, L) ≲ 1/Lτ for some τ > 0. There exists a

β ∈ (0, 1) such that ∣∣∣q∗kl − aR,D,∗kl

∣∣∣ ≲ 1

Rβ
. (1.45)

We point out the following features of the theorem above:

1. For the proof of Theorem D, we follow the strategy in [BP04] where similar

convergence rates were obtained for stochastic media satisfying a strong

mixing condition. In their proof, Bourgeat and Piatnitski [BP04] employ

penalized/regularized cell problems which makes the analysis possible.

2. In general, almost periodic media is known to be ergodic but not mix-

ing [Sim82]. Therefore, a quantification of almost periodic media was required.

This is provided in the form of ρ(A) in the paper of Shen [She15]. Previously,

convergence rate results were available for quasiperiodic media under the

small divisors condition. Shen [She15] proves that the small divisors condition

implies a polynomial decay of ρ(A;L) which is the hypothesis in Theorem D.

3. Convergence rates for periodizations appears to be a difficult problem.

1.7.5 Bloch wave homogenization of quasiperiodic media

Quasiperiodic functions form a subclass of almost periodic functions. In general,

quasiperiodic functions may be lifted to periodic functions on a higher dimensional

space. This suggests a second approach to Bloch wave homogenization of quasiperi-

odic media. Let A be a d × d matrix whose entries are quasiperiodic functions

in Rd, then there exists a d × d periodic matrix B and a M × d matrix Λ such

that A(x) = B(Λx) where M > d. Under the transformation x 7→ Λx, the operator

A = −div(A∇) in Rd with quasiperiodic coefficients may be lifted to the following

periodic operator in RM.

C = −ΛT∇y · B(y)Λ
T∇y . (1.46)
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The technique of lifting of quasiperiodic operators has been employed in [Koz78,

GH16, BLBL15, WGC18]. The main difficulty in obtaining Bloch waves for C is

that C is a degenerate operator. This is circumvented by regularizing the Bloch

spectral problem. The method of regularization was suggested in [BLBL15] for the

degenerate cell problem.

Let Q = [0, 2π)M and let C(η) B −(ΛT∇y + iη) · B(y)(Λ
T∇y + iη) denote the

shifted operator associated to C defined for η ∈ Y ′ B
[
− 1
2
, 1
2

)d
. We define the

regularized version of shifted operator as

Cδ(η) B −(ΛT∇y + iη) · B(y)(Λ
T∇y + iη) + δ∆.

The eigenfunctions of the regularized operator Cδ(η) with periodic boundary condi-

tions serve as approximate Bloch waves. The homogenized tensor for quasiperiodic

media is characterized in terms of the limit of the Hessian of the first approximate

Bloch eigenvalue as the regularization parameter δ tends to zero. Moreover, the

restriction of the approximate Bloch eigenfunctions to Rd is quasiperiodic. This

allows us to define a quasiperiodic Bloch transform which is employed for obtaining

homogenization limit of quasiperiodic media.

This method suggests another method for Bloch wave homogenization of

almost periodic operators through approximation of almost periodic functions by

trigonometric polynomials. In Section 1.7.4, the media is approximated by its

periodization on a large cube. In the present method, the difficulty of working on

a large domain is traded for the difficulty of working in high dimensions.

Plan of thesis

In Chapter 2, we will develop genericity results in spectral theory of periodic

elliptic operators. In Chapter 3, we establish the theorem on internal edge ho-

mogenization in the presence of multiplicity. In Chapter 4, we present a Bloch

approach to almost periodic homogenization. In Chapter 5, we prove a rate of

convergence result for approximations of homogenized tensor of almost periodic

media which are supplemented with numerical examples. In Chapter 6, we shall

prove homogenization theorem for quasiperiodic media using Bloch wave method.



Chapter 2

Simplicity of Spectral Edges

We consider the spectrum of a second-order elliptic operator in divergence

form with periodic coefficients, which is known to be completely described by

Bloch eigenvalues. We show that under small perturbations of the coefficients,

a multiple Bloch eigenvalue can be made simple. The Bloch wave method of

homogenization relies on the regularity of spectral edge. The spectral tools

that we develop, allow us to obtain simplicity of an internal spectral edge

through perturbation of the coefficients.

2.1 Introduction

An introduction to the spectral theory of periodic elliptic operators is provided

in Section 1.2. To recapitulate, the spectrum of a periodic elliptic operator is

a union of intervals whose endpoints are called as spectral edges. Further, the

spectrum is fully described by Bloch eigenvalues whose behaviour near spectral

edges determine a variety of physical phenomena. Simplicity of spectral edges is

a useful property for determining homogenized coefficients. In this chapter, we

make a small perturbation in the coefficients of a divergence-type periodic elliptic

operator so that the resulting operator has a desired simple spectral edge. The

main tool is the perturbation theory of Kato and Rellich [Kat95]. The contents

of this chapter form a section of the paper [1] which will appear in the journal

Asymptotic Analysis.

2.2 Main Results

Let Sym(d) denote the space of all real symmetric matrices, i.e., if A = (akl) ∈

Sym(d), then akl = alk. Let

M>
B = {A : Rd → Sym(d) : akl ∈ L

∞
♯ (Y,R) and A is coercive }.

35
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M>
B

may be identified as a subset of the space of d(d + 1)/2-tuples of L∞♯
functions and we shall use the norm-topology on this space in our further discussion.

A Baire space is a topological space in which the countable intersection of dense

open sets is dense. Note that M>
B

is an open subset of the space of all symmetric

matrices with L∞♯ (Y,R) entries, which forms a complete metric space, and hence

M>
B

is a Baire Space. We shall call a property generic in a topological space X,

if it holds on a set whose complement is of first category in X. In particular, a

property that is generic on a Baire space holds on a dense set.

The rest of the section will be devoted to the statements of the main results.

Theorem 2.1. Let η0 ∈ Y
′. The eigenvalues of the shifted operator A(η0) are

generically simple with respect to the coefficients A = (akl)
d
k,l=1 in M>

B
.

Remark 2.2. Theorem 2.1 is an extension of the theorem of Albert [Alb75] which

proves that the eigenvalues of −∆ + V are generically simple with respect to

V ∈ C∞(M) for a compact manifold M. The potential V is the quantity of interest

for Schrödinger operator, −∆+ V . For the applications that we have in mind, for

example, the theory of homogenization, the periodic matrix A in the divergence

type elliptic operator −∇ · (A∇) is of physical importance. The spectrum of

such operators is not discrete, and is analyzed through Bloch eigenvalues, which

introduces an extra parameter η ∈ Y ′ to the problem. The determination of

real-valued perturbation for the shifted operator A(η), which has complex-valued

coefficients, poses additional difficulties, when coupled with the lack of regularity

of the coefficients which the applications demand.

The operator A in L2(Rd) is unitarily equivalent to the fibered operator∫⊕
Y
′ A(η)dη in the Bochner space L2(Y ′ , L2♯(Y)). In the next theorem, we apply

a fiberwise perturbation to the direct integral decomposition of A to obtain an

operator with a simple Bloch eigenvalue.

Theorem 2.3. Let m ∈ N. Let λm(η) be the mth Bloch eigenvalue of the

operator A = −∇ · (A∇), where A ∈M>
B
. There exists an operator Ã, unitarily

equivalent to the operator
∫⊕
Y
′ A(η)+B(η)dη, such that the perturbed eigenvalue

λ̃m(η) is simple for all η ∈ Y ′. The perturbation
∫⊕
Y
′ B(η)dη has the form

B(η) = −(∇ + iη) · (B(η)(∇ + iη)), where the coefficients B(η) ∈ L∞♯ (Y) are

piecewise constant in Y ′ and may be chosen as small as desired in L∞-norm.

A spectral edge λ0 is said to be simple if the set {m ∈ N : ∃η ∈

Y
′

such that λm(η) = λ0} is a singleton. A spectral edge is said to be multiple if it

is not simple.
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Theorem 2.4. Let A ∈ M>
B
. Further, suppose that its entries A = (akl)

d
k,l=1

belong to the class W1,∞
♯ (Y,R). Let λ0 correspond to an edge of a spectral

gap of A and let m be the smallest index such that the Bloch eigenvalue λm
attains λ0. Then there exists a matrix B = (bkl)

d
k,l=1 with C∞

♯ (Y,R)-entries and

t0 > 0 such that for every t ∈ (0, t0], a spectral edge is achieved by the Bloch

eigenvalue λm(η;A+ tB) of the operator Ã = −∇ · (A+ tB)∇ and the spectral

edge is simple.

Theorem 2.5. Let A ∈M>
B
. Let λ0 correspond to an edge of a spectral gap of

A and let m be the smallest index such that the Bloch eigenvalue λm attains

λ0. Assume that the spectral edge is attained by λm(η) at finitely many points.

Then there exists a matrix B = (bkl)
d
k,l=1 with L∞♯ (Y,R)-entries and t0 > 0 such

that for every t ∈ (0, t0], a spectral edge is achieved by the Bloch eigenvalue

λm(η;A+tB) of the operator Ã = −∇·(A+tB)∇ and the spectral edge is simple.

Remark 2.6.

1. While Theorem 2.3 achieves global simplicity for a Bloch eigenvalue, the

perturbed operator is no longer a differential operator, i.e., it is non-local.

In the theory of homogenization, non-local terms usually appear as limits

of non-uniformly bounded operators [Bri02b], [Bri02a]. In the presence of

crossing modes, non-locality appears in the theory of effective mass [MCFK].

2. Theorem 2.4 is an adaptation of the theorem of Klopp and Ralston [KR00] to

divergence-type operators. Their proof relies heavily on the Hölder regularity

for weak solutions of divergence-type operators. In our proof, we require

Hölder continuity of the solutions as well as their derivatives. Hence, we have

to impose W1,∞ condition on the coefficients.

3. In Theorem 2.5, we weaken the W1,∞ requirement on the coefficients under

assumption of finiteness on the number of points at which the spectral edge

is attained. This is essential for the applications that we have in mind, in

the theory of homogenization, where only L∞ regularity is available on the

coefficients.

4. Bloch wave method belongs to the family of multiplier techniques in par-

tial differential equations. In particular, exponential type multipliers, eτϕ,

with real exponents, are used in obtaining Carleman estimates for elliptic

operators [Rou12].
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5. Any operator of the form −∇ ·A∇ in L2(Rd) may be written in direct integral

form, provided A is periodic. A satisfactory spectral theory for such operators

is available for real symmetric A. However, non-selfadjoint operators are

becoming increasingly important in physics [Sjo10]. For non-symmetric A,

the eigenvalues of the fibers A(η) may no longer be real and the eigenfunc-

tions may not form a complete set. These difficulties were surmounted in

proving the Bloch wave homogenization theorem for non-selfadjoint operators

in [SGV04]. Nevertheless, the generalized eigenfunctions form a complete

set for a large class of elliptic operators of even order [Agm62]. However,

we are not aware of physical interpretations of complex-valued Bloch-type

eigenvalues.

6. The results of this chapter would have similar analogues for internal edges of

an elliptic system of equations, for example, the elasticity system. It would

be interesting to consider these problems for the spectrum of non-elliptic

operators such as the Maxwell operator.

The plan of this chapter is as follows; in Section 2.3, we prove Theorem 2.1

on generic simplicity of Bloch eigenvalues at a point. In Section 2.4, we prove

Theorem 2.3 and In Sections 2.5 and 2.6, we prove Theorems 2.4 and 2.5 concerning

generic simplicity of spectral edges.

2.3 Local Simplicity of Bloch eigenvalues

Let η0 ∈ Y
′ . Let P be the set defined by

P B {A ∈M>
B : the eigenvalues of A(η0) are simple}.

We can write the set P as an intersection of countably many sets as follows:

Let P0 :=M>
B
, and

Pn := {A ∈M>
B : the first n eigenvalues of A(η0) are simple}

= {A ∈M>
B : λ1(η0) < . . . < λn(η0) < λn+1(η0) ≤ λn+2(η0) ≤ . . .}.

Note that

P ⊆ . . . ⊆ Pn ⊆ Pn−1 ⊆ . . . ⊆ P1 ⊆ P0 and P =
∞⋂
n=0

Pn.

We shall require the following two lemmas.
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Lemma 2.7. Pn is open in M>
B

for all n ∈ N ∪ {0}.

Lemma 2.8. Pn+1 is dense in Pn for all n ∈ N ∪ {0}.

Proof. (of Theorem 2.1) We recall that a property is said to be generic in a

topological space X, if it holds on a set whose complement is of first category in X.

We can write P as the countable intersection P =
∞⋂
n=0

Pn, where Pn is an open and

dense set in M>
B

for all n ∈ N ∪ {0}. Hence, the complement of P is a set of first

category. Therefore, the simplicity of eigenvalues of A(η0) is a generic property in

M>
B
. □

The rest of this section is devoted to the proofs of Lemmas 2.7 and 2.8.

2.3.1 Proof of Lemma 2.7

The proof of Lemma 2.7 requires continuous dependence of eigenvalues of the shifted

operator A(η) on its coefficients. This can be proved using the Courant-Fischer

min-max principle, which states that

λm(η0) = min
dim F=m

max
v∈F\{0}

∫
Y
A(∇+ iη0)v.(∇+ iη0)v dx∫

Y
|v|2 dx

,

where F ranges over all subspaces of H1♯(Y) of dimension m.

Proposition 2.9. Let A1, A2 ∈ M>
B

and let η 7→ λ1n(η), η 7→ λ2n(η) be the n-th

Bloch eigenvalues of the operators A1 and A2 respectively. Then

|λ1n(η0) − λ
2
n(η0)| ≤ cn(η0)||A1 −A2||L∞ ,

where cn(η0) is the nth eigenvalue of the shifted Laplacian H(η0) B −(∇+ iη0)
2

on Y with periodic boundary conditions. □

Proof. Let a1(v) =
∫
Y
A1(∇ + iη0)v.(∇+ iη0)v dy and a2(v) =

∫
Y
A2(∇ +

iη0)v.(∇+ iη0)v dy be the quadratic forms that appear in the min-max principle.

We have

|a1(v) − a2(v)| =

∣∣∣∣∣∫
Y

(A1 −A2)(∇+ iη0)v.(∇+ iη0)v dy

∣∣∣∣∣
≤ ||A1 −A2||L∞

∫
Y

|(∇+ iη0)v|
2 dy,
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Therefore,

a1(v) ≤ a2(v) + ||A1 −A2||L∞
∫
Y

|(∇+ iη0)v|
2 dy.

Now, divide both sides by
∫
Y
|v|2 dy, the L2♯(Y) inner product of v with itself

and apply the appropriate min-max to obtain

λ1m(η0) ≤ λ
2
m(η0) + cm(η0)||A1 −A2||L∞ .

Notice that the constant cm(η0) is precisely the mth eigenvalue of the shifted

Laplacian H(η0) on Y with periodic boundary conditions. By interchanging the

role of A1 and A2, the inequality

λ2m(η0) ≤ λ
1
m(η0) + cm(η0)||A2 −A1||L∞ ,

is obtained, which completes the proof of this proposition. □

Remark 2.10. In [CV97], the Bloch eigenvalues have been proved to be Lipschitz

continuous in η ∈ Y ′ . Indeed, one may prove that the Bloch eigenvalues are jointly

continuous in η ∈ Y ′ and the coefficients of the operator.

Proof of Lemma 2.7. Let A ∈ Pn and

δ = min{λj+1(η0) − λj(η0) : j = 1, 2, . . . , n}.

Let c = max
1≤j≤n+1

cj(η0), where cj(η0) is the jth eigenvalue of the shifted Laplacian

H(η0) on Y with periodic boundary conditions.

Let

U =

{
A ′ ∈M>

B : ||A−A ′||L∞ < δ

4c

}
.

Then U is an open set in M>
B

containing A. We shall show that U is a subset

of Pn. Let A ′ ∈ U. Let {λ ′
j
(η), j = 1, 2, . . .} be the Bloch eigenvalues of operator

A ′ associated to A ′. For j = 1, 2, . . . , n+ 1, we have:

|λ ′j (η0) − λj(η0)| ≤ cj(η0)||A−A ′||L∞ ≤ cj(η0) δ
4c
≤
δ

4
.

Hence,

δ ≤ λj+1(η0) − λj(η0)

≤ |λ ′j+1(η0) − λj+1(η0)|+ |λ ′j (η0) − λ
′
j+1(η0)|+ |λ ′j (η0) − λj(η0)|

≤
δ

4
+ |λ ′j (η0) − λ

′
j+1(η0)|+

δ

4

=
δ

2
+ λ ′j+1(η0) − λ

′
j (η0).

Therefore, λ ′
j+1(η0) − λ

′
j
(η0) ≥

δ
2
> 0 for j = 1, 2, . . . , n. Therefore, the first n

Bloch eigenvalues of A ′ are simple at η0, as required. □
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2.3.2 Proof of Lemma 2.8

In this section, we shall use perturbation theory of selfadjoint operators to prove

Lemma 2.8. Let A ∈M>
B

and B be a symmetric matrix with L∞♯ (Y,R)-entries. For

|τ| < σ0 B
α

2||B||L∞ , A+ τB ∈M>
B
, where α is a coercivity constant for A as in (A3).

Consider the operator A(η0)+τB(η0) in L2♯(Y). We shall prove in Appendix A that

the operator family F (τ) = A(η0) + τB(η0) is a selfadjoint holomorphic family

of type (B) for |τ| < σ0. A similar verification is performed in [SGV04]. For the

definition of selfadjoint holomorphic family of type (B) and related notions, see

Kato [Kat95].

We shall make use of the following theorem which asserts the existence of a

sequence of eigenpairs associated with a selfadjoint holomorphic family of type (B),

analytic in τ ∈ (−σ0, σ0). The proof of this theorem dates back to Rellich, hence

we shall call these eigenvalue branches as Rellich branches.

Theorem 2.11. (Kato-Rellich) Let σ0 > 0. Let F (τ) be a selfadjoint holo-

morphic family of type (B), defined for τ ∈ R, where R = {z ∈ C : |Re(z)| <

σ0, | Im(z)| < σ0}. Let F (τ)+C∗I have compact resolvent for some C∗ ∈ R. Then

there exists a sequence of scalar-valued functions (λj(τ))
∞
j=1 and L2♯(Y)-valued

functions (uj(τ))
∞
j=1 defined on I = (−σ0, σ0), such that

1. For each fixed τ ∈ I, the sequence (λj(τ))
∞
j=1 represents all the eigenvalues

of F (τ) counting multiplicities and the functions (uj(τ))
∞
j=1 represent the

corresponding eigenvectors.

2. For each j ∈ N, the functions (λj(τ))
∞
j=1 and (uj(τ))

∞
j=1 are real-analytic

on I with values in R and L2♯(Y) respectively.

3. The sequence (uj(τ))
∞
j=1 is orthonormal in L2♯(Y).

4. Suppose that the mth eigenvalue of F (τ) at τ = 0 has multiplicity p, i.e.,

λm(0) = λm+1(0) = . . . = λp+m−2(0) = λp+m−1(0).

Let K ⊂ R be an interval, with K containing the eigenvalue λm(0)

and no other eigenvalue. Then for |τ| sufficiently small, λm(τ),

λm+1(τ), . . . , λp+m−1(τ) are the only eigenvalues of F (τ), counting multi-

plicities, lying in the interval K.

By Kato-Rellich Theorem, an eigenvalue λ(η0) of F (0) of multiplicity h,

splits into h real-analytic functions (λm(τ;η0))
h
m=1. Further, the corresponding
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eigenfunctions (um(τ;η0))
h
m=1 are also real-analytic. Thus, for m = 1, 2, . . . , h and

τ ∈ (−σ0, σ0), we may write:

λm(τ;η0) = λ(η0) + τam(η0) + τ
2βm(τ, η0),

um(τ;η0) = um(η0) + τvm(η0) + τ
2wm(τ, η0),

where βm(τ, η0) and wm(τ, η0) are real-analytic functions.

The proof of Lemma 2.8 will rely on the fact that we may choose B in such

a way that am(η0) , an(η0) for some m,n ∈ {1, 2, . . . , h}. Then for sufficiently

small τ, λm(τ;η0) , λn(τ;η0). In that case, the multiplicity of the perturbed Bloch

eigenvalue at η0 will be less than h.

The eigenpairs satisfy the following equation:

(−(∇+ iη0) · (A+ τB)(∇+ iη0) − λm(τ, η0))um(τ, η0) = 0.

Differentiating the above with respect to τ and setting τ to 0, we obtain:

−(∇+ iη0) ·A(∇+ iη0)vm(η0) − (∇+ iη0) · B(∇+ iη0)um(η0)

− λ(η0)vm(η0) − am(η0)um(η0) = 0.

Finally, multiply by un(η0) and integrate over Y to conclude that∫
Y

B(∇+ iη0)um(η0) · (∇− iη0)un(η0) dy = am(η0)δmn. (2.1)

Equation (2.1) suggests the following construction. Let N(η0) denote the

unperturbed eigenspace, i.e.,

N(η0) B ker(A(η0) − λ(η0)I).

Given a perturbation B and a basis F = {f1, f2, . . . , fh} for N(η0), we can define a

selfadjoint operator GB on N(η0) whose matrix in the basis F is given by

([GB]F)m,n B

∫
Y

B(∇+ iη0)fm · (∇− iη0)fn dy.

In particular, it follows from equation (2.1) that in the basis of unperturbed

eigenfunctions E = {u1(η0), u2(η0), . . . , uh(η0)}, [GB]E is a diagonal matrix,

[GB]E = diag(a1(η0), a2(η0), . . . , ah(η0)).

If [GB]E is a scalar matrix, then the operator GB is a scalar multiple of identity

operator. However, if we can find a basis F for the eigenspace and a matrix B,

corresponding to which, the matrix [GB]F has a non-zero off-diagonal entry, then

for that choice of B, [GB]E will not be a scalar matrix, and hence, am(η0) , an(η0)

for some m,n ∈ {1, 2, . . . , h}.
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Proposition 2.12. There exists a symmetric matrix B with L∞♯ (Y,R)-entries

such that the operator GB is not a scalar multiple of identity.

Proof. As mentioned earlier, the proposition will be proved if we can find a

basis F and a matrix B with L∞♯ (Y,R) entries, such that the matrix [GB]F has a

non-zero off-diagonal entry. Let F = {f1, f2, . . . , fh} be any basis of N(η0), where

η0 = (η0,1, η0,2, . . . , η0,d). Observe that at least one of the following must be true:

There is some j ∈ {1, 2, . . . , d}, such that

(∂j + iη0,j)f1(∂j − iη0,j)f2 . 0, or (2.2)

there exists l ∈ {1, 2, . . . , d}, such that

|(∂l + iη0,l)f1|
2 − |(∂l + iη0,l)f2|

2 . 0. (2.3)

To prove this, we note that if (2.2) and (2.3) do not hold, then f1 and f2 are both

a scalar multiple of exp(−iη0 · y), which contradicts the fact that they are distinct

elements of a basis of N(η0). In either of these cases, we will choose a suitable F

and B.

Case 1. If (2.2) holds, then the function g defined by g B (∂j + iη0,j)f1(∂j −

iη0,j)f2 ∈ L
1
♯(Y) because f1, f2 ∈ H1♯(Y). Hence, by Hahn-Banach Theorem, there is

a continuous linear functional κ ∈ (L1♯(Y))
∗, such that κ(g) = ||g||L1

♯
(Y) , 0. However,

by duality, there exists a β ∈ L∞♯ (Y), such that κ(g) =
∫
Y
βgdy = ||g||L1

♯
(Y) , 0.

Now, either
∫
Y
Re(β)gdy , 0 or

∫
Y
Im(β)gdy , 0. Suppose, without loss of

generality, that
∫
Y
Re(β)gdy , 0 and define

B = diag(0, 0, . . . , 0,Re(β), 0, . . . , 0)

with Re(β) in the jth place, then

([GB]F)1,2 =

∫
Y

B(∇+ iη0)f1 · (∇− iη0)f2 dy

=

∫
Y

Re(β)(∂j + iη0,j)f1(∂j − iη0,j)f2 dy

=

∫
Y

Re(β)g dy , 0.

Case 2. If (2.3) holds, then the function g ′ defined by g ′ B |(∂l + iη0,l)f1|
2 −

|(∂l + iη0,l)f2|
2 ∈ L1♯(Y,R) because f1, f2 ∈ H1♯(Y). Hence, by Hahn-Banach Theorem,

there is a continuous linear functional κ ′ ∈ (L1♯(Y,R))
∗, such that κ ′(g ′) = ||g ′||L1

♯
(Y) ,

0. However, by duality, there exists a β ′ ∈ L∞♯ (Y,R), such that κ ′(g ′) =
∫
Y
β ′g ′ dy =

||g ′||L1
♯
(Y) , 0.
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Define

B = diag(0, 0, . . . , 0, β ′, 0, . . . , 0)

with β ′ in the lth place, then in the new basis F ′ = {f1 + f2, f1 − f2, f3, . . . , fh} of

N(η0), we have

([GB]F)1,2 =

∫
Y

B(∇+ iη0)(f1 + f2) · (∇− iη0)(f1 − f2) dy

=

∫
Y

β ′
(
|(∂l + iη0,l)f1|

2 − |(∂l + iη0,l)f2|
2
)
dy , 0.

In conclusion, we have found a basis in which an off-diagonal entry of [GB]F is

non-zero. Hence, the operator GB is not a scalar multiple of identity. In particular,

the matrix [GB]E cannot be a scalar matrix. □

Proof of Lemma 2.8. Let A ∈ Pn. Given ϵ > 0, we want to find A ′ ∈ Pn+1 such

that ||A−A ′||L∞ < ϵ. We shall construct A ′ in the form A ′ = A+ τB, where B is a

symmetric matrix with L∞♯ (Y,R)-entries and τ ∈ R. By Lemma 2.7, we can choose

τ0 so that A+ τB ∈ Pn for |τ| < τ0. Hence, the first n eigenvalues of the operator

−(∇+ iη0) · (A+τB)(∇+ iη0) are simple for |τ| < τ0. Subsequently, we must choose

τ such that |τ| < σ0 =
α

2||B||L∞ , in order to apply the Kato-Rellich Theorem. Now,

suppose that the (n+ 1)th eigenvalue of A(η0) has multiplicity h. By Kato-Rellich

Theorem (Theorem 2.11), the h eigenvalue branches of the perturbed operator

A(η0) + τB(η0) are given by the following expansion for r = 1, 2, . . . , h:

λr(τ;η0) = λ(η0) + τar(η0) + τ
2βr(τ;η0),

where βr(τ;η0) is real-analytic for τ ∈ (−σ0, σ0). If there are m,n ∈ {1, 2, . . . , h}

such that am(η0) , an(η0), then there is a τ1 such that λm(τ;η0) , λn(τ;η0) for

|τ| < τ1. Since two of the h eigenvalue branches are distinct for small τ, the

multiplicity of the perturbed eigenvalue, which can only go down for small τ, must

be less than or equal to h − 1. This can be achieved through an application of

Proposition 2.12 which gives us a matrix B1 such that at least two of (ar(η0))hr=1
are distinct. Now, starting from the matrix A + τ1B1, we repeat the procedure

above so that the multiplicity of the (n+ 1)th eigenvalue is further reduced. The

perturbed matrix is now labelled A+ τ1B1 + τ2B2. Finally, after a finite number

of such steps, we can reduce the multiplicity of the (n+ 1)th eigenvalue to 1. At

the end of this procedure, we obtain a matrix of the form A ′ = A+
∑N

j=1 τjBj, for

some N ∈ N. Each perturbation must be chosen so that
∑N

j=1 τj||Bj||L∞ < ϵ. □
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Remark 2.13. Theorem 2.1 proves that an eigenvalue λ(η0) of the shifted operator

A(η0) can be made simple by a perturbation of the matrix A ∈ M>
B
. However,

since the Bloch eigenvalues are Lipschitz continuous functions of the parameter

η ∈ Y
′ [CV97], the perturbed eigenvalue λ̃(η) will continue to remain simple in

some neighborhood of η0.

Remark 2.14.

1. The perturbation formula (2.1) may be thought of as a variation of the

Hellmann-Feynman theorem in the physics literature. The coefficients of

the differential operator (1.1) are real-valued functions, in as much as they

are related to properties of materials. The presence of complex-valued

coefficients in the perturbation formula complicates the choice of the real-

valued perturbation B.

2. In the theory of homogenization, the coefficients of the second order

divergence-type periodic elliptic operator are usually only measurable and

bounded. By regularity theory [LU68], the eigenfunctions of the shifted

operator A(η) are known to be Hölder continuous. However, derivatives

of eigenfunctions, which may not be bounded, appear in the perturbation

formula (2.1). Therefore, the perturbation B is chosen using the Hahn-Banach

Theorem.

2.4 Global Simplicity

In the previous section, we have proved that a given Bloch eigenvalue λm(η) of the

operator A can be made simple locally in Y ′ through a small perturbation in the

coefficients. In this section, we shall perform perturbation on the operatorA in such

a way that its spectrum still retains the fibered character, i.e., σ(Ã) = ∪η∈Y ′σ(Ã(η))

and the mth eigenvalue function η 7→ λ̃m(η) is simple for all η ∈ Y ′. However, the

perturbed operator Ã may no longer be a differential operator.

Proof of Theorem 2.3. The operator (1.1) has a direct integral decomposition for

periodic A, i.e., A is unitarily equivalent to
∫⊕
η∈TdA(η)dη, through the Gelfand

transform, where A(η) = −(∇ + iη) · A(∇ + iη) is an unbounded operator in

L2♯(Y). We would like to point out that Y ′ is understood to parametrize the torus,

Td. Consider the mth Bloch eigenvalue λm(η) of A. By Lemma 2.8, at any

point η0 ∈ Y
′, we can find a perturbation of the coefficients A = (akl) of A(η0)

so that the perturbed eigenvalue λ̃m(η0) is simple. By Remark 2.13, there is a
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neighborhood Gη0 of η0, in which the perturbed eigenvalue λ̃m(η) of the perturbed

shifted operator Ã(η) is simple. In this manner, for each ξ ∈ Td, we obtain a

perturbation Bξ and a neighborhood Gξ in which the eigenvalue of the perturbed

operator Ã(η) = −(∇+ iη) · (A+ Bξ)(∇+ iη) is simple. The collection {Gξ}ξ∈Td is

an open covering of the torus. By compactness of Td, there is a finite subcovering

having the property that in each member Gξ of the subcovering, the corresponding

perturbation Bξ causes the perturbed eigenvalue λ̃m(η) to be simple in Gξ.

Let {G1,G2, . . . ,Gn} be the finite subcovering of the torus obtained above.

Define O1 = G1. For r ≥ 1, define Or+1 = Gr+1 \
r⋃
j=1

Gj. Suppose that Bj is the

perturbation corresponding to the set Oj.

For every j ∈ {1, 2, . . . , n}, let χOj denote the characteristic function of the set

Oj. Now, define the parametrized operator

Ã(η) = −(∇+ iη) · (A+

n∑
j=1

Bj χOj)(∇+ iη)

which depends measurably on η ∈ Td. Finally, define the direct integral Ã =∫⊕
η∈Td Ã(η)dη, where each of the fibers is a differential operator in L2♯(Y). Then it

is known [RS78, p.284] that

σ(Ã) =
⋃
η∈Y

′

σ(Ã(η)).

Hence, we may define anmth eigenvalue function η 7→ λ̃m(η) with the property

that

|λm(η) − λ̃m(η)| ≤ Cmax
1≤j≤n

||Bj||L∞ ,

where λm(η) is the mth Bloch eigenvalue of A. □

Remark 2.15.

1. Although the mth eigenvalue of the perturbed operator is simple for all

parameter values, λ̃m(η) may only be measurable in η ∈ Y ′ . However, λ̃m(η)

is analytic in each Oj ⊂ Td.

2. The perturbed operator Ã is no longer a differential operator, even though

each fiber Ã(η) is a differential operator. In fact, we shall prove in Theo-

rem 2.17 that Ã is a differential operator if and only if B1 = B2 = . . . = Bn.
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3. A rigorous account of direct integral decomposition of operators, such as

the one employed above for periodic operators, may be found in [Sch90]

and [Mau68].

Lemma 2.16. Let B be a symmetric matrix with L∞♯ (Y,R)-entries. Define

B(η) = −(∇+ iη) ·B(∇+ iη). Let O ⊂ Y ′ be a proper subset of Y ′ such that B is

not identically zero on O. Then the operator B, defined through its unitary

equivalence to the direct integral
∫⊕
η∈Td B(η)χO dη, is not a differential operator.

Proof. By Peetre’s Theorem [Pee60], [Nar85, p. 174], a linear operator B : D(Rd) →
D
′

(Rd) is locally a differential operator if and only if supp(Bu) ⊂ supp(u) for

all u ∈ D(Rd). Here, D(Rd) denotes the space of compactly supported smooth

functions on Rd with the topology of test functions. Also, let S(Rd) denote the

Schwartz class of rapidly decreasing smooth functions on Rd. In order to show that

B is not a differential operator, we will show that it does not preserve supports.

Given g ∈ D(Rd), we define its Gelfand transform as

g♯(y, η) =
∑
p∈Zd

g(y+ 2πp)e−i(y+2πp)·η.

This is a function in L2(Y ′ , L2♯(Y)). The map g 7→ g♯ is an isometry from D(Rd),

equipped with the L2-norm, to L2(Y ′ , L2♯(Y)) and hence it may be extended to a

unitary isomorphism from L2(Rd) to L2(Y ′ , L2♯(Y)). We shall show that B(g) is not

compactly supported. Note that B(g) is a tempered distribution and it may be

defined as:

(B(g), ϕ) =

∫
O

∫
Y

B(∇+ iη)g♯(y, η) · (∇− iη)ϕ♯(y, η) dydη.

We may define the Fourier transform of B(g) in S ′(Rd) as

(B̂(g), ϕ) = (B(g),F −1(ϕ)),

where F −1(ϕ) = 1
(2π)d/2

∫
Rd ϕ(η)e

iy·η dη is the inverse Fourier transform of ϕ. Since

ϕ ∈ S(Rd), there exists a ψ ∈ S(Rd) such that ϕ = ψ̂. Therefore,

(B̂(g), ϕ) = (B(g),F −1(ϕ)) = (B(g), ψ).

By Poisson Summation Formula [Gra08, p. 171], we conclude that

ψ♯(y, η) =
∑
p∈Zd

ψ(y+ 2πp)e−i(y+2πp)·η =
1

(2π)d/2

∑
q∈Zd

ψ̂(η+ q)eiq·y

=
1

(2π)d/2

∑
q∈Zd

ϕ(η+ q)eiq·y. (2.4)
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Now, suppose that ϕ ∈ S(Rd) vanishes on
⋃
q∈Zd(O+q), then ψ♯, as obtained

in (2.4), vanishes on O. Hence,

(B̂(g), ϕ) = (B(g), ψ) =

∫
Y

∫
O

B(∇+ iη)g♯(y, η) · (∇− iη)ψ♯(y, η) dηdy = 0.

Therefore, B̂(g) vanishes on the open set Rd \
⋃
q∈Zd(O+ q). By Schwartz-Paley-

Wiener Theorem [Rud91, p. 191], B̂(g) cannot be the Fourier transform of a

compactly supported distribution, i.e., B(g) is not compactly supported. □

Theorem 2.17. Let {O1,O2, . . . ,On} be a partition of Y ′ up to a set of measure

zero, i.e., Y ′ \
⋃n
j=1Oj is a set of measure zero. Define B : D(Rd) → D ′

(Rd)

by B(g) =
∑n

j=1

∫⊕
η∈Oj
Bj(η)g♯(y, η)dη where Bj(η) = −(∇+ iη) ·Bj(∇+ iη) for all

j ∈ {1, 2, . . . , n}, Bj are matrices with L∞♯ (Y,R)-entries, then B is a differential

operator if and only if B1 = B2 = . . . = Bn.

Proof. If B B B1 = B2 = . . . = Bn, then B(g) = −∇ · B∇(g) which is a differential

operator.

Conversely, without loss of generality, assume that B1 , B2 and suppose that

B is a differential operator. Then

B(g) =

∫⊕
η∈Y

′

B1(η)dη+

∫⊕
η∈O2

(B2 − B1)(η)dη+

∫⊕
η∈O3

(B3 − B1)(η)dη+ . . .

+

∫⊕
η∈On

(Bn − B1)(η)dη.

Hence,

B(g) −

∫⊕
η∈Y

′

B1(η)dη =

n∑
j=2

∫⊕
η∈Oj

(Bj − B1)(η)dη

The left hand side of the above equation is a differential operator. We will show

that the right hand side is not a differential operator to obtain a contradiction.

We proceed as in Lemma 2.16.

Define C : D(Rd) → D ′

(Rd) by

(C(g), ϕ) =

n∑
j=2

∫
Oj

∫
Y

(Bj − B1)(∇+ iη)g♯(y, η) · (∇− iη)ϕ♯(y, η) dydη

It is easy to see that C(g) ∈ S ′(Rd).

Therefore, we may define its Fourier transform by

(Ĉ(g), ϕ) = (C(g),F −1(ϕ)),
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where F −1(ϕ) = 1
(2π)d/2

∫
Rd ϕ(η)e

iy·η dη is the inverse Fourier transform of ϕ. Since

ϕ ∈ S(Rd), there exists ψ ∈ S(Rd) such that ϕ = ψ̂. Therefore,

(Ĉ(g), ϕ) = (C(g),F −1(ϕ)) = (C(g), ψ).

As in (2.4), we have

ψ♯(y, η) =
1

(2π)d/2

∑
q∈Zd

ϕ(η+ q)eiq·y. (2.5)

Now, suppose that ϕ ∈ S(Rd) vanishes on
⋃
q∈Zd(

⋃n
j=2Oj + q), then ψ♯, as

obtained in (2.5), vanishes on
⋃n
j=2Oj. Hence,

(Ĉ(g), ϕ) = (C(g), ψ)

=

n∑
j=2

∫
Y

∫
Oj

(Bj − B1)(∇+ iη)g♯(y, η) · (∇− iη)ψ♯(y, η) dηdy = 0.

Therefore, Ĉ(g) vanishes on the open set Rd \
⋃
q∈Zd(

⋃n
j=2Oj + q). By Schwartz-

Paley-Wiener Theorem [Rud91, p. 191], Ĉ(g) cannot be the Fourier transform of a

compactly supported distribution, i.e., C(g) is not compactly supported. Therefore,

C is not a differential operator. □

2.5 Proof of Theorem 2.4

In this section, we prove that a spectral edge of a periodic elliptic differential

operator can be made simple through a perturbation in the coefficients. The proof

essentially follows Klopp and Ralston [KR00], with the straightforward modification

that the coefficients must come from W1,∞
♯ (Y,R). This condition is required to

ensure that the eigenfunctions and their derivatives are Hölder continuous functions.

We produce the proof here for completeness.

Suppose that the coefficients of the operator (1.1), akl ∈W1,∞
♯ (Y). Note that

the Bloch eigenvalues which are defined for η ∈ Y ′ are Lipschitz continuous in η

and may be extended as periodic functions to Rd. In the sequel, we shall treat the

Bloch eigenvalues as functions on Td, which is identified with Y ′ in a standard way.

Also, we shall write λj(η,A) to specify that a Bloch eigenvalue corresponds to a

particular matrix A, appearing in the operator A. We shall prove the theorem for

an upper endpoint of a spectral gap. The proof for a lower endpoint is identical.

We shall require the following lemma.
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Lemma 2.18. Consider the operator A as in (1.1), with A ∈ M>
B
. Let λ0

correspond to the upper edge of a spectral gap of A and let m be the smallest

index such that the Bloch eigenvalue λm attains λ0, then

(L1) There exist numbers a, b ∈ R such that λm−1(η) < a < λ0 ≤ λm(η) < b for

all η ∈ Y ′. Further, there exists M ∈ N such that M > m and the Bloch

eigenvalue λM satisfies λM(η) > b for all η ∈ Y ′.

(L2) Let B be a symmetric matrix with L∞♯ (Y,R)-entries. There is a finite

open covering of Y ′, {G1,G2, . . . ,Gn} such that for each Gj, we have an

orthonormal set in L2♯(Y) of functions real-analytic for η ∈ Gj and for

sufficiently small t,

{ϕ
(j)
m (η,A− tB), ϕ

(j)

m+1(η,A− tB), . . . , ϕ
(j)

Rj
(η,A− tB)}. (2.6)

Further, for each fixed t, the linear subspace generated by the functions

in (2.6) contains the eigenspaces corresponding to eigenvalues of −(∇+

iη) · (A− tB)(∇+ iη) between a and b.

(L3) The functions in (2.6) may be chosen such that the following equation

is satisfied 〈
dϕ

(j)
r

dt
,ϕ

(j)
s

〉
= 0 for r, s ∈ {m,m+ 1, . . . , Rj}, (2.7)

where ⟨·, ·⟩ denotes the L2♯(Y) inner product.

Proof.

Proof of (L1) As noted in Remark 2.13, the Bloch eigenvalues are Lipschitz

continuous functions on a compact set Td. Hence, the function η 7→ λm(η) is

bounded above, say by b. Since λ0 is a spectral edge, δ B min
η∈Y

′
λm(η)−max

η∈Y
′
λm−1(η)

is positive. Choose a = λ0 −
δ
2
. These choices of a and b satisfy our requirements.

By application of Weyl’s law [RS78], the eigenvalues of the periodic Laplacian

on Y satisfy the following inequality, for some s > 0 and C1 > 0, for large M,

λM(0, I) ≥ λ
N
M ≥ C1M

s, (2.8)

where λN
M

denotes the Mth eigenvalue of the Neumann Laplacian on Y and I is

the d-dimensional identity matrix. Note that λM(η, I) denotes the Mth Bloch

eigenvalue of the periodic Laplacian.

By Lipschitz continuity of Bloch eigenvalues in the dual parameter, we have

|λM(η, I) − λM(0, I)| ≤ C|η| ≤ C2.
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Therefore, for all η ∈ Y ′ ,

λM(η, I) ≥ λM(0, I) − C2. (2.9)

On combining (2.8) and (2.9), for all η ∈ Y ′ , we obtain

λM(η, I) ≥ C1M
s − C2.

It follows from a standard argument involving min-max principle, that

λM(η, I) ≤ ||A−1||L∞λM(η,A).
Therefore, for all η ∈ Y ′,

λM(η,A) ≥
1

||A−1||L∞ λM(η, I)

≥
C1M

s

||A−1||L∞ −
C2

||A−1||L∞ .

Finally to prove (L1), choose M large enough so that

C1M
s

||A−1||L∞ −
C2

||A−1||L∞ > b.

Proof of (L2) In order to prove (L2), we shall construct a set of functions,

real-analytic in a neighborhood of each point of the torus and for small t, spanning

the union of eigenspaces corresponding to eigenvalues of the operatorA(η;A−tB) B

−(∇+ iη) · (A− tB)(∇+ iη) between a and b and then employ compactness of Td

to obtain a finite collection of neighborhoods.

For each ξ ∈ Td, there is a circle Γξ in the complex plane containing the

eigenvalues of A(ξ,A) between a and b. Let B be a d × d real symmetric matrix

with W1,∞
♯ (Y) entries. There is a neighborhood Rξ of ξ such that the number of

eigenvalues of operator A(η;A− tB) between a and b remains constant for η ∈ Rξ
and for small t. As a consequence, the operator Pξ defined by

Pξ(η;A− tB) B −
1

2πi

∫
Γξ

(A(η;A− tB) − zI)
−1
dz (2.10)

is real-analytic in Rξ of ξ and for small t. The operator Pξ is an orthogonal

projection onto the direct sum of eigenspaces of A(η;A− tB) corresponding to the

eigenvalues between a and b. The analyticity of the projection operator follows

from the analyticity of the integrand, which is a consequence of the operator family

A(η;A− tB) being a holomorphic family of type (B).

In order to obtain a collection of functions, real-analytic for η ∈ Rξ and small

t, we choose an orthonormal set of eigenfunctions of A(ξ,A) corresponding to
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eigenvalues between a and b, for example, let an element of this set be ϕ(·, ξ, 0),

then the function defined by ϕ(·, η, t) B Pξ(η;A−tB)ϕ(·, ξ, 0) belongs to the linear

subspace containing eigenfunctions of A(η;A− tB) corresponding to eigenvalues

between a and b in Rξ for small t and is analytic as a L2♯(Y)-valued map. There

are two technical issues.

Firstly, it remains to prove that this mapping is also analytic when viewed

as H1♯(Y)-valued map. For the proof, we require the following facts. (i) The map

(η, t) → ||ϕ(·, η, t)||H1
♯
(Y) is bounded for η ∈ Rξ and small t. Note that ϕ(·, η, t) is a

linear combination of eigenfunctions corresponding to eigenvalues between a and b.

Therefore, ||ϕ(·, η, t)||H1
♯
(Y) is bounded due to boundedness of those eigenfunctions

in H1♯(Y). (ii) L2♯(Y) is dense in H−1
♯
(Y). The two facts imply analyticity of the map

from η to H1♯(Y). Indeed, weak-holomorphy for a Banach space-valued map can be

proved using weak-holomorphy for a dense subspace, provided boundedness of the

map. More details can be found in [SGV04, p.23, Lemma 2.5].

Secondly, the application of the projection operator may lead to loss of

normality. However, we can further impose norm 1 condition by dividing by the

norm, which is an analytic function away from 0.

In this manner, for each ξ ∈ Td, we have a neighborhood Rξ with certain

properties. These sets form an open covering of Td. By compactness of Td, the

open covering has a finite subcovering {G1,G2, . . . ,Gn} with the following properties.

1. For each Gj, we have an orthonormal set in L2♯(Y)

{ϕ
(j)
m (η,A− tB), . . . , ϕ

(j)

Rj
(η,A− tB)}

whose elements are real-analytic for η ∈ Gj and small t.

2. The linear subspace generated by

{ϕ
(j)
m (η,A− tB), . . . , ϕ

(j)

Rj
(η,A− tB)}

contains the eigenspaces corresponding to eigenvalues of A(η;A− tB) that

lie between a and b.

Proof of (L3) Let ϕ̃(j)
r =

∑
p=m u

(j)
rpϕ

(j)
p , then

〈
dϕ̃

(j)
r

dt
, ϕ̃

(j)
s

〉
=

∑
p

du
(j)
rp

dt
u
(j)
sp +

∑
p,q

u
(j)
rpu

(j)
sq

〈
dϕ

(j)
p

dt
,ϕ

(j)
q

〉
,

where u(j)
rp = u

(j)
rp(t) are functions of t.
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If we set U to be the matrix with entries u(j)
rs and Ψ to be the matrix with

entries −

〈
dϕ

(j)
r

dt
,ϕ

(j)
s

〉
, (2.7) will hold if

dU

dt
= UΨ.

This is solved with the initial condition U(0) = I, where I is the identity matrix of

dimension Rj −m+ 1. The matrix Ψ is antiselfadjoint, therefore, U(t) is unitary

and analytic for η ∈ G. Replace ϕ(j)
r with ϕ̃(j)

r to complete the proof of (L3). □

Proof of Theorem 2.4.

Consider the sesquilinear form

a(η, t)(u, v) B

∫
Y

(A− tB)(∇+ iη)u · (∇− iη)v.

For the functions constructed in (L2), ⟨dϕ
(j)
r

dt
, ϕ

(j)
s ⟩ = 0 for all r, s. Thus,

d

dt

(
a(η, t)(ϕ

(j)
r (η,A− tB), ϕ

(j)
s (η,A− tB))

)
= −

∫
Y

B(∇+ iη)ϕ
(j)
r (η,A− tB) · (∇− iη)ϕ

(j)
s (η,A− tB)dy.

A function f defined on Rd is said to be (η, Y)-periodic if for all p ∈ Zd,

y ∈ Rd, u(y + 2πp) = e2πip·ηu(y). The eigenfunctions of A(η,A) with periodic

boundary conditions, when multiplied by exp(−iη · y), become eigenfunctions of

A B −∇ ·A∇ with (η, Y)-periodic boundary conditions, i.e., there are λ and u such

that −∇ · (A∇)u = λu, where u is (η, Y)-periodic. Since u is a complex-valued

function, the regularity theorem [LU68, Chapter 3, Section 15] cannot be applied

directly. However, since the operator is linear, we may write u = v + iw and

express the eigenvalue equation for u as two equations for the real-valued functions

v and w. In particular, v and w satisfy −∇ · (A∇)v = λv and −∇ · (A∇)w = λw in

the interior of Y. Hence, by the regularity theory for elliptic equations with W1,∞
coefficients, v and w and their first-order derivatives are Hölder continuous in the

interior of Y. Further, the Hölder estimates in the interior of Y are independent of

η ∈ Y
′ . Consequently, u and its derivatives are Hölder continuous in the interior of

Y.

Choose η̂ and ϕ0 such that A(̂η,A)ϕ0 = λ0ϕ0. Choose ϕ0 , exp(−îη ·y). This

can be achieved because the multiplicity of the Bloch eigenvalue at η̂ is greater

than one. Therefore, (∇+ îη)ϕ0 is non-zero. Consequently, there exist a y0 in the

interior of Y, an l with 1 ≤ l ≤ d, and a θ > 0 such that
∣∣∣∣( ∂
∂xl

+ îηl
)
ϕ0(y0, η̂)

∣∣∣∣2 ≥ θ.
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Since ϕ0 and its derivatives are Hölder continuous in the interior of Y, there is a

small ϵ0 > 0 such that,

for |y− y0| < ϵ0,

∣∣∣∣∣∣
(
∂

∂xl
+ îηl

)
ϕ0(y, η̂)

∣∣∣∣∣∣2 > 2θ

3
. (2.11)

Additionaly, since ϕ(j)
r obtained earlier in (L2) are linear combinations of eigen-

functions, by the Hölder continuity of the eigenfunctions and their derivatives, an

ϵ0 may be chosen so that

Rj∑
p=m

∣∣∣∣∣∣
(
∂

∂xl
+ iηl

)
ϕ

(j)
p (y, η,A) −

(
∂

∂xl
+ iηl

)
ϕ

(j)
p (y0, η,A)

∣∣∣∣∣∣2 < θ

3
, (2.12)

for η ∈ Gj and |y − y0| < ϵ0. Define the matrix B = diag(0, . . . , 0, bl, 0, . . . , 0) all

of whose diagonal entries are zero other than bl which is chosen as a function

bl ∈ C
∞
0
(|y − y0| < ϵ0) such that bl ≥ 0 and

∫
Y
bl = 1. Extend B periodically to

Rd.

There is an index q such that η̂ ∈ Gq. Therefore, ϕ0(y, η̂) =
Rq∑
r=m

crϕ
(q)
r (y, η̂, A).

Define ϕ0(y, η̂, t) =
Rq∑
r=m

crϕ
(q)
r (y, η̂, A− tB). Then by (2.11),

d

dt
(a(̂η, t)(ϕ0(·, η̂, t), ϕ0(·, η̂, t))) |t=0

= −

∫
Y

bl

(
∂

∂yl
+ iη̂l

)
ϕ0(y, η̂)

(
∂

∂yl
− iη̂l

)
ϕ0(y, η̂) dy

≤
−2θ

3
.

Hence, the following holds for t sufficiently small:

a(̂η, t)(ϕ0(·, η̂, t), ϕ0(·, η̂, t)) ≤ λ0 −
2θ

3
t+ t2β(t), (2.13)

where β(t) = O(1) as t→ 0.

Given η ∈ Y ′ , there is j ∈ {1, 2, . . . , n} such that η ∈ Gj. We define the function

ϕ
(j)
∗ (y, η, t) =

Rj∑
r=m

(∂l + iηl)ϕ
(j)
r (y0, η,A)ϕ

(j)
r (y, η,A− tB). (2.14)

For ϕ(·, η, t) =
Rj∑
r=m

a
(j)
r (η)ϕ

(j)
r (·, η,A− tB), ϕ(·, η, t) is perpendicular to ϕ(j)

∗ (·, η, t)

if and only if

Rj∑
r=m

a
(j)
r (η) (∂l + iηl)ϕ

(j)
r (y0, η,A) = 0. (2.15)
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Further, a(j)
r (η) may be chosen analytic for η ∈ Gj. For ϕ(·, η, t) satisfying (2.15)

and ||ϕ||L2
♯
(Y) = 1, the following holds for η ∈ Gj,

d

dt
(a(η, t)(ϕ(·, η, t), ϕ(·, η, t))) |t=0

= −

∫
Y

bl

(
∂

∂yl
+ iηl

)
ϕ(y, η, 0)

(
∂

∂yl
− iηl

)
ϕ(y, η, 0) dy

= −

∫
Bϵ0 (y0)

∣∣∣∣∣∣∣∣
Rj∑
r=m

a
(j)
r (η)

(
(∂l + iηl)ϕ

(j)
r (y, η,A) − (∂l + iηl)ϕ

(j)
r (y0, η,A)

)∣∣∣∣∣∣∣∣
2

bl dy

≥ −
θ

3
, (2.16)

where the last inequality follows from (2.12). The right hand side of the above

inequality is independent of j ∈ {1, 2, . . . , n} and hence it holds for all η ∈ Y ′.

Therefore, the following holds true for sufficiently small t, uniformly for η ∈ Y ′ and

||ϕ||L2
♯
(Y) = 1,

a(η, t)(ϕ(·, η, t), ϕ(·, η, t)) ≥ λ0 −
θ

3
t+ t2γ(t). (2.17)

In particular, γ(t) is bounded uniformly for η ∈ Y ′ and small t.

To find an upper bound for λm(̂η,A− tB), we apply the following variational

characterization of the eigenvalues of A(η,A−tB) to (2.13). If ϕ1, ϕ2, . . . , ϕm−1 are

the firstm−1 eigenfunctions corresponding to the selfadjoint operatorA(η,A−tB),

then the mth eigenvalue of A(η,A− tB) is given by the formula

λm(η,A− tB) = min
ϕ⊥{ϕ1,ϕ2,...,ϕm−1}, ||ϕ||L2

♯
(Y)

=1
a(η, t)(ϕ,ϕ).

Therefore, by (2.13),

λm(̂η,A− tB) < λ0 −
7θ

12
t, (2.18)

for t sufficiently small. To find a lower bound for λm+1(η,A−tB), we apply another

variational characterization for the eigenvalues to (2.17), viz.,

λm+1(η,A− tB) = max
dimV=m

min
ϕ⊥V, ||ϕ||

L2
♯
(Y)

=1
a(η, t)(ϕ,ϕ), (2.19)

where V varies over m-dimensional subspaces of H1♯(Y).

For each fixed η and t, take the m-dimensional subspace Vη,t spanned by the

first m− 1 eigenfunctions of A(η,A− tB) and ϕ(j)
∗ as defined in (2.14), i.e.,

Vη,t = {ϕ1(η, t), ϕ2(η, t), . . . , ϕm−1(η, t), ϕ
(j)
∗ (η, t)}.
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Then ϕ(η, t) satisfying the equation (2.15) is perpendicular to Vη,t and allows us

to conclude that

λm+1(η,A− tB) > λ0 −
5θ

12
t, (2.20)

for sufficiently small t and for all η ∈ Y ′. The new spectral edge is still attained

by the mth Bloch eigenvalue for small t and is its minimum value. Therefore, the

estimate (2.18) implies that the new spectral edge is smaller than the unperturbed

spectral edge. In particular, the new spectral edge λ̃0 satisfies λ̃0 < λ0 − 7θ
12
t for

small t. The estimate (2.20) implies that the perturbed (m+ 1)th Bloch eigenvalue

lies above λ0 − 5θ
12
t for small t. Hence, the distance between the new spectral edge

λ̃0 and the perturbed (m + 1)th Bloch eigenvalue is at least θ
6
t for small t. As a

consequence, the new spectral edge is only attained by the mth Bloch eigenvalue,

i.e., it is simple. □

Remark 2.19. The proof of Theorem 2.4 depends crucially on the interior Hölder

continuity of the Bloch eigenfunctions and their derivatives. This requires the

coefficients of the elliptic operator to have W1,∞
♯ (Y) entries. We attempt to reduce

this regularity requirement to L∞ in Section 2.6.

2.6 Proof of Theorem 2.5

We shall prove Theorem 2.5 for an upper endpoint of a spectral gap. The proof

for a lower endpoint is identical. Let λ0 be the upper endpoint of a spectral

gap of A B −∇ · (A∇), which is achieved by the Bloch eigenvalue λm(η) at

finitely many points η1, η2, . . . , ηN in Y ′ . The proof uses ideas from Parnovski and

Shterenberg [PS17] and is divided into the following steps:

1. Lemma 2.22 shows that we can find neighborhoods (uniform in t) of

η1, η2, . . . , ηN in Y ′ such that the perturbed Bloch eigenvalue is simple at all

those points in them where the spectral edge is attained.

2. However, there may be points outside these neighborhoods where the spectral

edge is attained. In Lemma 2.23, we show that we can choose t0 such that for

all t ∈ (0, t0], all points where spectral edge is attained are in a desired union

of neighborhoods. In particular, we can choose these to be the neighborhoods

found in Step 1.

We shall require the following preliminaries.
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The multiplicity of a Bloch eigenvalue can be reduced at a finite number of

points in the dual parameter by application of the same perturbation. This will be

the content of the next proposition.

Proposition 2.20. Fix m ∈ N. Let S = {η1, η2, . . . , ηN} be a finite collection

of points in Y ′. Then there exists a matrix B with L∞♯ (Y,R)-entries and a t0
positive such that for all t ∈ (0, t0], the Bloch eigenvalue λm(η;A+ tB) of the

operator A+ tB = −∇ · (A+ tB)∇ is simple for all ηn ∈ S, 1 ≤ n ≤ N.

To this end, we require the following lemma.

Lemma 2.21. Let N ∈ N. Let X be a normed linear space over K (R or C)

and let x1, x2, . . . , xN be non-zero elements of X. Then there exists an x∗ ∈ X∗

such that ∀ n = 1, 2, . . . ,N, ⟨x∗, xn⟩ , 0.

Proof. Consider the finite dimensional subspace F of X spanned by x1, x2, . . . , xN.

For each n = 1, 2, . . . ,N, let F∗n denote the subspace of F∗ containing x∗ ∈ F∗ such

that ⟨x∗, xn⟩ = 0. Then F∗ , ∪N
n=1F

∗
n since a vector space cannot be written as

a finite union of its proper subspaces. Hence, there exists an x∗ ∈ F∗ such that

x∗ < ∪N
n=1F

∗
n. Hence, for all n = 1, 2, . . . ,N, ⟨x∗, xn⟩ , 0. Finally, extend x∗ to X∗

using the Hahn-Banach Theorem. □

Proof of Proposition 2.20. As a part of the proof of Lemma 2.8, we proved that

for a given m ∈ N and η0 ∈ Y
′ , there exists a t0 positive such that for all t ∈ (0, t0],

the Bloch eigenvalue λm(η;A + tB) of the perturbed operator A + tB is simple

at η0. In the present proposition, we shall make a Bloch eigenvalue λm(η) of the

operator A simple at a finite number of points in Y ′ through a perturbation in the

coefficients.

As in the proof of Proposition 2.12, the perturbation at any ηn ∈ S gives

rise to a selfadjoint holomorphic family of type (B), real-analytic for t ∈ (−σ0, σ0),

where σ0 = α
2||B||L∞ . Suppose that the eigenvalue λm(ηn) of the operator A(ηn) has

multiplicity hn. For the perturbed operator −∇ · (A+ tB)∇, the eigenvalue λm(ηn)

splits into hn branches. Suppose that the hn eigenvalues and eigenvectors are given

as follows. For n = 1, 2, . . . ,N and r = 1, 2, . . . , hn and t ∈ (−σ0, σ0):

λrm(t;ηn) = λm(ηn) + ta
r
m(ηn) + t

2βrm(t, ηn)

urm(t;ηn) = u
r
m(ηn) + tv

r
m(ηn) + t

2wrm(t, ηn),

where βrm(t, ηn) and wrm(t, ηn) are real-analytic functions.
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As in (2.1), the following system of equations holds true for n = 1, 2, . . . ,N

and r = 1, 2, . . . , hn:∫
Y

B(∇+ iηn)u
r
m(ηn) · (∇+ iηn)usm(ηn) dy = arm(ηn)δrs.

The above equations define operators that act on the unperturbed eigenspaces

at each ηn. The multiplicity would go down if we find B and bases for the

unperturbed eigenspaces in which some off-diagonal entry, in particular, the (1, 2)-

entry is non-zero. To achieve this, we proceed as in the proof of Proposition 2.12. For

any choice of basis of the unperturbed eigenspace at ηn, we find that either (2.2)

or (2.3) holds. However, we cannot use this idea anymore, since, different ηn
would have different matrices B. To remedy this, we notice that, at each ηn =

(ηn,1, ηn,2, . . . , ηn,d), for a basis given by {f1n, f
2
n, . . . , f

hn
n } either

d∑
l=1

(∂l + iηn,l)f
1
n(∂l − iηn,l)f

2
n . 0, (2.21)

or, if the above sum is zero, then in the modified basis {f1n, f1n+ f2n, f3n, . . . , f
hn
n },

d∑
l=1

(∂l + iηn,l)f
1
n(∂l − iηn,l)(f

1
n + f

2
n) =

d∑
l=1

|(∂l + iηn,l)f
1
n|
2 . 0, (2.22)

provided that f1n , exp(−iηn · y).

We can always choose f1n to be a function different from exp(−iηn · y) since

at any of the ηn, we have an eigenspace of dimension greater than 1. For each ηn,

either the real part or the imaginary part of the expressions in (2.21) and (2.22)

is non-zero. We shall call the non-zero part as pn. If both are non-zero, we may

choose either one. This will make sure that we have a collection of only real-valued

functions.

By the above procedure, we have N elements of L1♯(Y,R), again labelled as

{p1, p2, . . . , pN}. By Lemma 2.21, there is an Υ ∈ (L1♯(Y,R))
∗ such that Υ(pn) , 0

for all n = 1, 2, . . . ,N. By duality, there exists a β ∈ L∞♯ (Y,R) such that Υ(pn) =∫
Y
βpn dy , 0.

Define B = diag(β,β, . . . , β), then either

Re
∫
Y

B(∇+ iηn)f
1
n · (∇+ iηn)f2n dy , 0,

or

Re
∫
Y

B(∇+ iηn)f
1
n · (∇− iηn)(f1n + f

2
n) dy , 0,

depending on ηn.
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At the end of this step, the multiplicity of λm(η) at each of the points ηn will

reduce at least by 1. We repeat the procedure with the points among {η1, η2, . . . , ηN}

where the eigenvalue is still multiple. Finally, we require at most M steps to make

the Bloch eigenvalue simple at each of these points, where M = max
1≤n≤N

hn. □

Lemma 2.22. Let N ∈ N. Let A ∈M>
B

and let B be a real symmetric matrix

with L∞♯ (Y)-entries. Let A = −∇ · (A∇) be a periodic elliptic differential

operator. Let λ0 be the upper endpoint of a spectral gap, which is attained by

the Bloch eigenvalue λm(η) at finitely many points η1, η2, . . . , ηN in Y ′. Then

for all n ∈ {1, 2, . . . ,N}, there is a neighborhood On of ηn such that for all

t ∈ (0, t0], the mth Bloch eigenvalue λm(η,A+ tB) is simple for all η ∈ On where

the spectral edge is attained.

Proof. We know that if a Bloch eigenvalue is simple at a point η ∈ Y ′ , it continues

to remain simple in its neighborhood. The same remark applies here, i.e., for n =

1, 2, . . . ,N, a neighborhood exists in which the perturbed Bloch eigenvalue is simple.

However, it is not clear that these neighborhoods can be chosen independently

of t ∈ (0, t0]. Following [PS17], we shall prove that for each {ηn}
N
n=1, there is a

neighborhood, not depending on t, in which the mth Bloch eigenvalue is simple at

all points in it where the spectral edge is attained. We will indicate here how this

may be achieved in the case of a single point η0 of multiplicity 2. The spectral

edges of multiplicity greater than 2 are handled in a recursive manner and the

spectral edges at multiple points are handled by making using of Proposition 2.20,

where a common perturbation B is obtained for finitely many points of multiplicity.

By the construction in Lemma 2.18, there is a neighborhood G of η0 in which

the multiplicity of the eigenvalue λm(η) does not exceed 2. Further by (L2), there

is an orthonormal set of functions {ϕ1(η,A+ tB), ϕ2(η,A+ tB)} real-analytic for

η ∈ G and sufficiently small t, such that the linear subspace V(η, t) generated by

these functions is the direct sum of the eigenspaces corresponding to the eigenvalues

λm(η,A+ tB) and λm+1(η,A+ tB). Finally, in (L3), we show that we may choose

these functions such that ⟨ϕj, ϕ̇k⟩ = 0 for j, k = 1, 2.

As a consequence, we can write a 2×2matrix C, with real-analytic entries whose

eigenvalues coincide with λm(η,A+ tB) and λm+1(η,A+ tB) in a neighbourhood

of η = η0 and t = 0. Consider the sesquilinear form

ã(η, t)(u, v) B

∫
Y

(A+ tB)(∇+ iη)u · (∇− iη)v dy,

then the entries of C = (cjk) are given by

cjk(η, t) = ã(η, t) (ϕj(η,A+ tB), ϕk(η,A+ tB)) .
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For r = 1, 2, we may write

ϕr(η,A+ tB) = ψr(η) + tvj(η) +O(t
2),

where the order is uniform for η ∈ G due to the analyticity of ϕr with respect to η

and t. For a given basis Φ = {u1, u2} of the 2-dimensional subspace V(η, t), define

bjk(η,Φ) B

∫
Y

B(∇+ iη)uj · (∇− iη)uk dy.

Also, denote by Ψ(η) the basis {ψ1(η), ψ2(η)} of V(η, 0). Then the entries of matrix

C may be written as

cjk(η, t) = ã(η, 0)(ψj(η), ψk(η)) + t bjk(η,Ψ(η)) +O(t
2).

By Proposition 2.20, there is a basis Θ = {θ1, θ2} of V(η0, 0) such that bjk(η0, Θ) ,

0. Without loss of generality, we may take bjk(η0, Θ) = 1. By analysis of the

discriminant of the matrix {bjk(η0, Θ)}
2
j,k=1, we may conclude that for any other

basis of V(η0, 0), and in particular for the basis Ψ(η0) = {ψ1(η0), ψ2(η0)}, we

either have |b12(η0, Ψ(η0))| ≥ 1/4 or |b11(η0, Ψ(η0)) − b22(η0, Ψ(η0))| ≥ 1. Due to

analyticity of {ψ1(η), ψ2(η)}, the matrix {bjk(η,Ψ(η))}
2
j,k=1 is close to the matrix

{bjk(η0, Ψ(η0))}
2
j,k=1 whenever η is close to η0. Hence, we may conclude that there is

a neighborhood G̃ of η0 such that for all η ∈ G̃, we either have |b12(η,Ψ(η))| ≥ 1/8

or |b11(η,Ψ(η)) − b22(η,Ψ(η))| ≥ 3/4. We will now prove that in either of these

cases, the points in G̃ where the spectral edge is attained are simple.

If η ∈ G̃ is such that |b12(η,Ψ(η))| ≥ 1/8, then C has distinct eigenvalues.

On the other hand, suppose that η ∈ G̃ is such that |b12(η,Ψ(η))| < 1/8 but

|b11(η,Ψ(η)) − b22(η,Ψ(η))| ≥ 3/4. Without loss of generality and for convenience,

we may assume that b11(η,Ψ(η)) ≥ b22(η,Ψ(η))+3/4 and that λm(η0) = λm+1(η0) =

0. Further, at the cost of reducing the neighborhood G̃ of η0, we may take

|bjj(η,Ψ(η)) − bjj(η0, Ψ(η0))| ≤ 1/8 for j = 1, 2. Then the entries of matrix C

have the form cjj(η0, t) = t bjj(η0, Ψ(η0)) +O(t
2) and c12(η0, t) = t b12(η0, Ψ(η0)) +

O(t2). Now, suppose that for some t, we have a multiple eigenvalue at η ∈

G̃. Therefore, c11(η, t) = c22(η, t). Subtracting the expression for c11(η, t) from

the expression for c22(η, t) and noting that ã(η, 0)(ψj(η), ψj(η)) ≥ 0, we obtain

ã(η, 0)(ψ2(η), ψ2(η)) ≥ 3t/4+O(t
2). Thus,

c22(η, t) = ã(η, 0)(ψ2(η), ψ2(η)) + tb22(η,Ψ(η)) +O(t
2)

≥ t(3/4+ b22(η,Ψ(η)) +O(t
2)

≥ t(5/8+ b22(η0, Ψ(η0)) +O(t
2)

> c22(η0, t).
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Hence, η is not a point of minimum. □

In the next lemma, we shall prove that a spectral edge does not move very

far for small perturbations in the coefficients of the periodic operator A. We

shall denote the operator −∇ · (A + tB)∇ as A + tB, where A = −∇ · (A∇) and

B = −∇ · (B∇). Let St denote the set of points at which the new spectral edge is

attained, i.e.,

St B {η ∈ Y
′

: The Bloch eigenvalue λm(η;A+ tB) attains spectral edge at η}.

Lemma 2.23. Let N ∈ N. Let A ∈M>
B

and let B be a real symmetric matrix

with L∞♯ (Y)-entries. Let A = −∇ · (A∇) be a periodic elliptic differential

operator. Let λ0 be the upper endpoint of a spectral gap, which is attained by

the Bloch eigenvalue λm(η) at finitely many points η1, η2, . . . , ηN in Y ′. Given

a δ belonging to the open interval (0, 1), there is a t0 such that

for t ∈ (0, t0], St ⊂

N⋃
j=1

B(ηj, δ),

where for all j = 1, 2, . . . ,N, we have B(ηj, δ) B {η ∈ Y
′

: |η− ηj| < δ}.

Proof. We prove this lemma by contradiction. Assume that there is a δ ∈ (0, 1)

and sequences (tn) and (ξn) such that tn → 0 and ξn ∈ Stn such that

∀ 1 ≤ j ≤ N, |ξn − ηj| ≥ δ. (2.23)

Let λ0(A + tB) denote the spectral edge associated to the operator A + tB.

The perturbed spectral edge satisfies the following inequality.

|λ0(A) − λ0(A+ tnB)| = |min
η∈Y

′
λm(η;A) − min

η∈Y
′
λm(η;A+ tnB)|

= |− max
η∈Y

′
(−λm(η;A)) + max

η∈Y
′
(−λm(η;A+ tnB))|

≤ max
η∈Y

′
|λm(η;A) − λm(η;A+ tnB)|

≤ Ctn. (2.24)

Since (ξn) is a bounded sequence in Y ′ , a subsequence of (ξn) converges to ξ̂,

which we continue to denote by (ξn).

We shall prove that

λm(ξn;A+ tnB) → λm(ξ̂;A). (2.25)
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Observe that∣∣∣∣∣∫
Y

(A+ tnB)(∇+ iξn)u(∇− iξn)ū dy−

∫
Y

A(∇+ iξ̂)u(∇− iξ̂)ū dy

∣∣∣∣∣
≤

∣∣∣∣∣∫
Y

A(∇+ iξn)u(∇− iξn)ū dy−

∫
Y

A(∇+ iξ̂)u(∇− iξ̂)ū dy

∣∣∣∣∣
+ tn||B||L∞

♯
(Y)

∫
Y

|(∇+ iξn)u|
2 dy

≤ C
(∣∣∣ξn − ξ̂∣∣∣ ||∇u||L2

♯
(Y)||u||L2

♯
(Y) +

∣∣∣ξn − ξ̂∣∣∣ ||u||2L2
♯
(Y)

)
+ tn||B||L∞

♯
(Y)

∫
Y

|(∇+ iξn)u|
2 dy,

for some generic constant C, which may change from line to line.

Therefore,∫
Y

(A+ tnB)(∇+ iξn)u(∇− iξn)ū dy

≤

∫
Y

A(∇+ iξ̂)u(∇− iξ̂)ū dy

+ C
(∣∣∣ξn − ξ̂∣∣∣ ||∇u||L2

♯
(Y)||u||L2

♯
(Y) +

∣∣∣ξn − ξ̂∣∣∣ ||u||2L2
♯
(Y)

)
+ tn||B||L∞

♯
(Y)

∫
Y

|(∇+ iξn)u|
2 dy

Divide throughout by ||u||2
L2
♯
(Y)

and apply the min-max principle to obtain the

following inequality:

λm(ξn;A+ tnB) ≤ λm(ξ̂;A) + C
(√
λm(0; I) + 1

) ∣∣∣ξn − ξ̂∣∣∣ + tn||B||L∞
♯
(Y)|λm(ξn; I)|.

Similarly,

λm(ξ̂;A) ≤ λm(ξn;A+ tnB) + C
(√
λm(0; I) + 1

) ∣∣∣ξn − ξ̂∣∣∣ + tn||B||L∞
♯
(Y)|λm(ξn; I)|.

Therefore,

|λm(ξn;A+ tnB) − λm(ξ̂;A)| ≤ C
(√
λm(0; I) + 1

) ∣∣∣ξn − ξ̂∣∣∣ + tn||B||L∞
♯
(Y)|λm(ξn; I)|.

(2.26)

In order to establish (2.25), notice that the first and second terms on RHS

of (2.26) converge to 0 by the convergence of ξn to ξ̂ and the boundedness of

λm(ξn; I) along with convergence of tn to 0, respectively.

It follows from (2.24) and (2.25) that λ0(A) = λm(ξ̂;A) and hence, ξ̂ is also

a spectral edge. By (2.23), this contradicts the initial assumption that there are

only N points at which the spectral edge is attained. □
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Proof of Theorem 2.5. The spectral edge of the operator A is attained at finitely

many points η1, η2, . . . , ηN in Y ′ . Now, apply Lemma 2.22 to these points, so that

there is a neighborhood Oj of each of the points (ηj)
N
j=1 in which any spectral edge

is simple for all t, for a range of t. Each of these neighborhoods contain a ball,

B(ηj, δj) of radius δj centered at ηj. Let δ B min
1≤j≤N

δj, then by Lemma 2.23, there

exists a t0 positive such that for all t ∈ (0, t0], the spectral edge of the perturbed

operator A+ tB is contained in the union of the balls
N⋃
j=1

B(ηj, δ).

Hence, we have obtained a perturbation of the operator A such that its

spectral edge is simple. □

2.7 Comments

In Section 1.4, we defined regularity of spectral edges as a collection of three

conditions (R1), (R2), (R3). Our results show that these conditions may also

interact. This thesis is only concerned with simplicity of spectral edges under a

second order perturbation. However, the genericity of discreteness of spectral edges

for nonsmooth second order elliptic operators is unexplored. The result of Filonov

and Kachkovskiy [FK18], in particular, makes the assumption of C2 second order

coefficients which is not suitable for homogenization. It is an open question whether

a second order elliptic operator with only measurable and bounded coefficients

has an isolated spectral edge, generically or otherwise. On the other hand, non-

degeneracy of spectral edges of Schrödinger operators under a perturbation of the

potential was first studied in the work of Parnovski and Shterenberg [PS17]. We

feel that their method should also extend to second order perturbations.

In proving the genericity theorems of this chapter, our perturbation often

comes from Hahn-Banach theorem hence it is not clear whether it is constructible.

However, the method of Parnovski and Shterenberg [PS17] assures us that a

perturbation of a larger period may work.

Another possible extension of our work pertains to elliptic systems or to

infinite periodic quantum graphs.

The bottom spectral edge of an elliptic system can only be made simple

through a perturbation in lower order terms since a purely second order operator

would have multiplicity of the bottom spectral edge corresponding to the number

of equations in the system, for example, the elasticity operator has a multiplicity 3

bottom spectral edge. A lower order perturbation also has advantages in terms
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of regularity since a measurable and bounded perturbation would suffice unlike

our theorem where W1,∞-regularity is required. Indeed, we would like to see if a

lower order perturbation can be usefully employed for Bloch wave homogenization

in the case of systems. It may be recalled that the ground states of systems of

partial differential equations exhibit eigenvalue crossings and may not have an

analytic description, which may cause difficulties in applications. Previously, Bloch

wave homogenization for systems such as the elasticity system [SGV05], the Stokes

system [ACFO07, AGV17] have been achieved through one-parameter perturbation

theory and directional analyticity of the ground state.

On the other hand, infinite quantum graphs display a larger variety of phe-

nomena. Parnovski and Shterenberg [PS17] furnish an example of a quantum

graph with a non-isolated spectral edge. There are a number of works dealing

with spectral properties of infinite quantum graphs [Car12, EKMN18, KN19]. We

would like to see if some of our methods may be useful in this context.



Chapter 3

Application to Internal Edge
Homogenization

We establish Bloch wave homogenization at an internal edge in the presence

of multiplicity by employing a perturbation in the coefficients. We show that

all the crossing Bloch modes contribute to the homogenization at the internal

edge and that higher and lower modes do not contribute to the homogenization

process.

3.1 Introduction

Birman and Suslina [BS04] have described homogenization as a spectral threshold

effect. Their analysis focuses on finding norm resolvent estimates of different

orders. For the operator A, it is known that inf σ(A) = 0. This corresponds to the

bottom edge of its spectrum. A non-zero spectral edge is called an internal edge.

The notion of homogenization has been extended to internal edges in [Bir04, BS06].

Correctors for internal edge homogenization are developed in [SK09, SK11]. The

aim of this chapter is to extend the internal edge homogenization theorem to

a multiple spectral edge. To this end, we make use of the results in Chapter 2

to render a multiple spectral edge simple by perturbation in coefficients. Norm

resolvent convergence of operators is quantified in terms of the convergence of

coefficients in Lemma 3.1, whereas the Bloch wave homogenization of the perturbed

operator is performed in Lemma 3.2. The contents of this chapter appear as part

of the paper [1] which has been accepted for publication in Asymptotic Analysis.

65
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3.2 Internal Edge Homogenization for a multi-

ple spectral edge

In Chapter 1, Section 1.5, we reviewed the internal edge homogenization theo-

rem of Birman and Suslina [BS06]. In this section, we shall prove a theorem

corresponding to internal edge homogenization of the operator Aϵ = −∇ ·
(
A( x

ϵ
)∇

)
in L2(Rd) for periodic A in the presence of multiplicity. We shall interpret the

three assumptions (B1), (B2), (B3) that have been made on the spectral edge as

hypotheses on the shape and structure of the spectral edge. Without knowledge

of the shape and structure of the spectral edge, it is not possible to obtain any

explicit homogenization result.

Starting with a spectral edge which is not simple, we shall appeal to Theo-

rem 2.5 to modify the spectral edge so that it becomes simple. We shall make the

following assumptions on the spectral edge. We assume the finiteness of the number

of points at which the spectral edge is attained, however, since the contributions

from different points are added up, we may as well assume that the spectral edge is

attained at one point. Therefore, suppose that for the operator (1.1), a spectral gap

exists. Let λ0 denote the upper endpoint of this spectral gap of A and let m be the

smallest index such that the Bloch eigenvalue λm attains λ0, then λ0 = min
η∈Y

′
λm(η).

Suppose that the spectral edge is attained at a unique point η0 ∈ Y
′. Also

suppose that the eigenvalue λ0 has multiplicity 2. Now, a perturbation matrix B

with L∞♯ (Y,R) entries, as in Theorem 2.5, is applied to the coefficients of operator

A, so that the new operator Ã(t) = A + tB, has a simple spectral edge λ̃0(t)

for sufficiently small t. However, the perturbed Bloch eigenvalues λ̃m(η, t) and

λ̃m+1(η, t) are simple in some neighborhood O of η0 for small enough t. The

neighbourhood O is assumed to be independent of t.

For the perturbed spectral edge, we assume the following hypothesis

(C1) λ̃m(η; t) attains minimum λ̃0(t) at a unique point η0(t) ∈ O and is non-

degenerate on O, i.e.,

λ̃m(η; t) − λ̃0(t) = (η− η0(t))
T B̃0(t)(η− η0(t)) +O(|η− η0(t)|

3),

for η ∈ O, where B̃0(t) is positive definite, i.e., there is α0 > 0, independent

of t, such that B̃0(t) > α0I. Further, the order above holds uniformly for

sufficiently small t.
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(C2) λ̃m+1(η; t) attains minimum λ̃1(t) at a unique point η1(t) ∈ O and is non-

degenerate on O, i.e.,

λ̃m+1(η; t) − λ̃1(t) = (η− η1(t))
T B̃1(t)(η− η1(t)) +O(|η− η1(t)|

3),

for η ∈ O, where B̃1(t) is positive definite, i.e., there is α1 > 0, independent

of t, such that B̃1(t) > α1I. Further, the order above holds uniformly for

sufficiently small t.

In essence, we are asking for the Bloch eigenvalues to have the shapes before

and after the perturbation as in Fig. 3.1 and Fig. 3.2.

We will now set up notation for the internal edge homogenization theorem that

we intend to prove. For j = 0, 1, let ψ̃m+j(y, ηj(t)) = exp(iy ·ηj(t))ϕ̃m+j(y; t), where

ϕ̃m+j is a normalized eigenvector corresponding to the eigenvalue λ̃j(t) = λ̃m+j(ηj(t))

of Ã(ηj; t) = −(∇+iηj)·(A+tB)(∇+iηj). In what follows, we shall choose t = O(ϵ4).

Define the following operators

R(ϵ) B
(
Aϵ − (ϵ−2λ0 − ϑ

2)I
)−1
, and (3.1)

R̃0(ϵ) B |Y|[ψ̃ϵm]
(
−∇ · B̃0(t)∇+ ϑ2I

)−1
[ψ̃ϵm]

+ |Y|[ψ̃ϵm+1]
(
−∇ · B̃1(t)∇+ ϑ2I

)−1
[ψ̃ϵ

m+1]. (3.2)

We shall require the following two lemmas.

Lemma 3.1. Let

R̃(ϵ) B
(
Ãϵ(t) − (ϵ−2λ̃0(t) − ϑ

2)I
)−1
, (3.3)

where Ãϵ(t) = −∇ ·
(
A( x

ϵ
) + tB( x

ϵ
)
)
∇ is an unbounded operator in L2(Rd), satis-

fying assumptions (C1) and (C2). Choose t = O(ϵ4). Then

||R(ϵ) − R̃(ϵ)||L2(Rd)→L2(Rd) = O(ϵ) as ϵ→ 0.

Lemma 3.2. With the same notation as in Lemma 3.1, it holds that

||R̃(ϵ) − R̃0(ϵ)||L2(Rd)→L2(Rd) = O(ϵ) as ϵ→ 0.

The proofs of these lemmas will be the content of Subsections 3.2.1 and 3.2.2.

Now, we state the internal edge homogenization theorem for a multiple spectral

edge.
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Figure 3.1: Spectral edge before perturbation.
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Figure 3.2: Spectral edge after perturbation.
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Theorem 3.3. Let A be the operator defined in L2(Rd) as A B −∇ · (A∇).

Suppose that the matrix A belongs to M>
B
. Let λ0 be the upper edge of a

spectral gap associated to operator A. Suppose that λ0 is attained at one point

η0 ∈ Y
′ and its multiplicity is 2. Let ϑ2 > 0 be small enough so that λ0 − ϑ2

remains in the spectral gap. Let Aϵ be defined as Aϵ = −∇ ·
(
A( x

ϵ
)∇

)
in L2(Rd).

Let Ã(t) = A+ tB be a perturbation of A such that the perturbed operator

has a simple spectral edge at λ̃0(t). Let Ãϵ(t) = −∇ ·
(
A( x

ϵ
) + tB( x

ϵ
)
)
∇. Choose

t = O(ϵ4). Assume conditions (C1), (C2) on the perturbed eigenvalues. Then

||R(ϵ) − R̃0(ϵ)||L2(Rd)→L2(Rd) = O(ϵ) as ϵ→ 0, (3.4)

where R(ϵ) and R̃0(ϵ) are defined in (3.1) and (3.2), respectively.

Proof of Theorem 3.3. Observe that

||R(ϵ) − R̃0(ϵ)||L2(Rd)→L2(Rd)

≤ ||R(ϵ) − R̃(ϵ)||L2(Rd)→L2(Rd) + ||R̃(ϵ) − R̃0(ϵ)||L2(Rd)→L2(Rd). (3.5)

Applying Lemmas 3.1 and 3.2 to (3.5), we obtain (3.4). □

Remark 3.4.

1. Theorem 3.3 allows the computation of the homogenized coefficients through

perturbed Bloch eigenvalues. Both the crossing modes contribute to homoge-

nization, even though the spectral edge is simple after the perturbation.

2. A perturbation of the form Ã(t), as mentioned in Theorem 3.3, exists for

sufficiently small t by Theorem 2.5.

3. If the spectral edge is attained at finitely many points, the contribution to

the effective operator from each of those points, are merely added up, as in

Theorem 1.20. Hence, our assumption that the spectral edge is attained at

one point is not restrictive. Further, the assumption that multiplicity of the

spectral edge is 2 can also be relaxed, since our method allows successive

reduction of multiplicity of Bloch eigenvalues at multiple points.

3.2.1 Proof of Lemma 3.1

The aim of this section is to prove Lemma 3.1. We begin by introducing some

notation. Define the two resolvents S(ϵ) and S̃(ϵ) by

S(ϵ) =
(
A− (λ0 − ϵ

2ϑ2)I
)−1

and S̃(ϵ) =
(
Ã(t) − (λ̃0(t) − ϵ

2ϑ2)I
)−1

(3.6)
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Define

h[u] B

∫
Rd

A∇u · ∇u dy− λ0

∫
Rd

|u|2 dy.

Then h is a closed sectorial form with domain H1(Rd).

Consider another form p(t) with domain H1(Rd) defined by

p(t)[u] B

∫
Rd

tB∇u · ∇u dy− (λ̃0(t) − λ0)

∫
Rd

|u|2 dy.

To the forms h and p, we shall apply the following theorem about continuity

of resolvents which can be found in [Kat95, p. 340].

Theorem 3.5 [Kat95]. Let h be a densely defined, closed sectorial form bounded

from below and let p be a form relatively bounded with respect to h, so that

D(h) ⊂ D(p) and

|p[u]| ≤ a||u||2 + bh[u], (3.7)

where 0 ≤ b < 1, but a may be positive, negative or zero. Then h + p is

sectorial and closed. Let H,K be the operators associated with h and h + p,

respectively. Let ζ ∈ C not belong to the spectrum of H. Let R(ζ,H) denote

the resolvent of H at ζ, i.e., R(ζ,H) = (H− ζI)−1. Also, suppose that

||(a+ bH)R(ζ,H)|| < 1, (3.8)

then ζ is not in the spectrum of K and

||R(ζ, K) − R(ζ,H)|| ≤
4||(a+ bH)R(ζ,H)||

(1− ||(a+ bH)R(ζ,H)||)2
||R(ζ,H)||. (3.9)

□

In order to apply the theorem, we must verify the hypotheses (3.7) and (3.8).

We shall prove that p(t) is relatively bounded with respect to h, i.e., there exist

a, b ∈ R, such that:

|p(t)[u]| ≤ a||u||2 + bh[u],

Observe that

h[u] ≥ α

∫
Rd

|∇u|2 dy− λ0

∫
Rd

|u|2 dy,
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and

p(t)[u]

≤ t||B||L∞
∫
Rd

|∇u|2 dy+ |̃λ0(t) − λ0|

∫
Rd

|u|2 dy

=
t||B||L∞
α

{∫
Rd

α|∇u|2 dy− λ0

∫
Rd

|u|2 dy

}
+

{
|̃λ0(t) − λ0|+

t||B||L∞
α

λ0

}∫
Rd

|u|2 dy

≤ bh[u] + a||u||2,

where a =
{
|̃λ0(t) − λ0|+

t||B||L∞
α
λ0

}
≤ c1t and b =

t||B||L∞
α

= c2t for some constants

c1 and c2.

Next, observe that for selfadjoint operator H, the resolvent R(ζ,H) is a normal

operator, therefore, we have (see [Kat95, p. 177])

||R(ζ,H)|| ≤
1

dist(ζ, σ(H))
.

Further,

||(a+ bH)R(ζ,H)|| ≤ ||aR(ζ,H)||+ ||bHR(ζ,H)||

≤
a

dist(ζ, σ(H))
+ ||b(I+ ζR(ζ,H))||

≤
a

dist(ζ, σ(H))
+ b||I||+ b||ζR(ζ,H)||

≤
a

dist(ζ, σ(H))
+ b+ b

|ζ|

dist(ζ, σ(H))
.

The operator corresponding to the sectorial form h is H B −∇ ·A∇− λ0I, therefore,

0 ∈ σ(H), so that, for ζ = −ϵ2ϑ2, dist(ζ, σ(H)) = ϵ2ϑ2 for sufficiently small ϵ.

Hence

||(a+ bH)R(ζ,H)|| ≤
a

ϵ2ϑ2
+ 2b.

Notice that R(ζ,H) = S(ϵ) and R(ζ, K) = S̃(ϵ). Let us assume that t is small

enough so that Theorem 3.5 can be applied to the resolvents in (3.6). In particular,

we have

||S(ϵ) − S̃(ϵ)||L2(Rd)→L2(Rd) = ||R(ζ,H) − R(ζ, K)||

≤
4(c1t+ 2c2tϵ

2ϑ2)

(ϵ2ϑ2 − c1t− 2c2tϵ2ϑ2)2
.

Choose t so that c1t = ϵ4ϑ2, then

||S(ϵ) − S̃(ϵ)||L2(Rd)→L2(Rd) ≤
4(1+ 2c3ϵ

2ϑ2)

ϑ2(1− ϵ2 − 2c3ϵ4ϑ2)2
.



72 Application to Internal Edge Homogenization

Further, for sufficiently small ϵ,

||S(ϵ) − S̃(ϵ)||L2(Rd)→L2(Rd) ≤
16(1+ c3ϑ

2)

ϑ2(1− c3ϑ2)2
. (3.10)

Proof of Lemma 3.1. Define the scaling transformation Tϵ by

Tϵ : u(y) 7→ ϵd/2u(ϵy).

These are unitary operators on L2(Rd). For the operators (3.1) and (3.3), it holds

that

R(ϵ) = ϵ2T ∗ϵS(ϵ)Tϵ and R̃(ϵ) = ϵ2T ∗ϵ S̃(ϵ)Tϵ.

Proving Lemma 3.1 is equivalent to proving that

||S(ϵ) − S̃(ϵ)||L2(Rd)→L2(Rd) = O

(
1

ϵ

)
.

In fact, in (3.10), we proved

||S(ϵ) − S̃(ϵ)||L2(Rd)→L2(Rd) = O(1).

□

3.2.2 Proof of Lemma 3.2

The aim of this section is to prove Lemma 3.2. Let
(
λ̃l(η; t)

)∞
l=1

and
(
ϕ̃l(y, η; t)

)∞
l=1

be the Bloch eigenvalues and the corresponding orthonormal Bloch eigenvectors

for the operator Ã(t), defined in Theorem 3.3. Let ψ̃l(y, η; t) = eiy·ηϕ̃l(y, η; t).

In the sequel, we shall suppress the dependence on t for notational convenience.

The operator Ã may be decomposed in terms of the Bloch eigenvalues as in the

theorem below, a proof of which may be found in [BLP11].

Theorem 3.6. Let g ∈ L2(Rd). Define l th Bloch coefficient of g as follows:

(B̃lg)(η) =

∫
Rd

ψ̃l(y, η)g(y) dy, l ∈ N, η ∈ Y
′

.

Then the following inverse formula holds:

g(y) =

∞∑
l=1

∫
Y
′

(B̃lg)(η)ψ̃l(y, η) dη =

∞∑
l=1

(B̃∗l)(B̃lg), where

(B̃∗lh)(y) =

∫
Y
′

h(η)ψ̃l(y, η)dη for h ∈ L2(Y
′

).
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In particular, the following representation holds for the operator Ã:

Ã =
∑
l∈N

B̃∗l λ̃lB̃l.

Also,

R(ζ, Ã) =
(
Ã− ζI

)−1
=

∑
l∈N

B̃∗l(λ̃l − ζ)
−1B̃l.

□

Define the Fourier Transform and the inverse Fourier Transform

(Fu) (η) =
1

(2π)d/2

∫
Rd

e−iy·ηu(y) dy,
(
F −1u

)
(η) =

1

(2π)d/2

∫
Rd

eiy·ηu(y) dy.

Proof of Lemma 3.2. Define the operator

S̃0(ϵ) B |Y|[ψ̃m]
(
−∇ · B̃0∇+ ϵ2ϑ2I

)−1
[ψ̃m] + |Y|[ψ̃m+1]

(
−∇ · B̃1∇+ ϵ2ϑ2I

)−1
[ψ̃m+1],

where [ψ̃m] denotes the operation of multiplication by the function ψ̃m(y, η0(t))

and [ψ̃m+1] denotes the operation of multiplication by the function ψ̃m+1(y, η1(t)).

By making O smaller if required (see (C1) and (C2)), we may assume that

2(λ̃m(η) − λ̃0) ≥ (η− η0) · B̃0(η− η0), η ∈ O, and

2(λ̃m+1(η) − λ̃1) ≥ (η− η1) · B̃1(η− η1), η ∈ O.

Let χ be the characteristic function of O, then the projections F = B̃∗m χ B̃m +

B̃∗
m+1 χ B̃m+1 and F⊥ = I− F commute with Ã.

The operator S̃0(ϵ) can be written as

S̃0(ϵ) = |Y|[ϕ̃m]F
−1

[(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1]
F [ϕ̃m]

+ |Y|[ϕ̃m+1]F
−1

[(
(η− η1) · B̃1(η− η1) + ϵ

2ϑ2I
)−1]
F [ϕ̃m+1].

Next, we represent S̃0(ϵ), as the sum of two terms: the first one is

S̃0χ(ϵ) = |Y|[ϕ̃m]F
−1

[
χ(η)

(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1]
F [ϕ̃m]

+ |Y|[ϕ̃m+1]F
−1

[
χ(η)

(
(η− η1) · B̃1(η− η1) + ϵ

2ϑ2I
)−1]
F [ϕ̃m+1].

and the second one is

S̃01−χ(ϵ) = |Y|[ϕ̃m]F
−1

[
(1− χ(η))

(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1]
F [ϕ̃m]

+ |Y|[ϕ̃m+1]F
−1

[
(1− χ(η))

(
(η− η1) · B̃1(η− η1) + ϵ

2ϑ2I
)−1]
F [ϕ̃m+1].

(3.11)
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For the operators (3.2) and (3.3), it holds that

R̃(ϵ) = ϵ2T ∗ϵ S̃(ϵ)Tϵ and R̃0(ϵ) = ϵ2T ∗ϵ S̃
0(ϵ)Tϵ.

Therefore, to prove Lemma 3.2, it is sufficient to prove that

||S̃(ϵ) − S̃0(ϵ)||L2(Rd)→L2(Rd) = O

(
1

ϵ

)
. (3.12)

Now, observe that

||S̃(ϵ) − S̃0(ϵ)||L2→L2 = ||S̃(ϵ)F⊥ + S̃(ϵ)F− S̃0χ(ϵ) − S̃
0
1−χ(ϵ)||L2→L2

≤ ||S̃(ϵ)F⊥||L2→L2 + ||S̃(ϵ)F− S̃0χ(ϵ)||L2→L2 + ||S̃01−χ(ϵ)||L2→L2
Thus, in order to prove (3.12), it is sufficient to prove the following:

||S̃(ϵ)F⊥||L2(Rd)→L2(Rd) = O(1), (3.13)

||S̃01−χ(ϵ)||L2(Rd)→L2(Rd) = O(1), (3.14)

||S̃(ϵ)F− S̃0χ(ϵ)||L2(Rd)→L2(Rd) = O

(
1

ϵ

)
. (3.15)

Proof of (3.13): Notice that the Bloch wave decomposition of S̃(ϵ) is given

by

S̃(ϵ) =

∞∑
l=1

B̃∗l

(
λ̃l − λ̃0 + ϵ

2ϑ2
)−1
B̃l.

We may write

S̃(ϵ) = S̃(ϵ)F+ S̃(ϵ)F⊥,

where

S̃(ϵ)F = B̃∗m
(
λ̃m − λ̃0 + ϵ

2ϑ2
)−1
χB̃m + B̃∗m+1

(
λ̃m+1 − λ̃0 + ϵ

2ϑ2
)−1
χB̃m+1,

and

S̃(ϵ)F⊥ =
∑

l,m,m+1

B̃∗l

(
λ̃l − λ̃0 + ϵ

2ϑ2
)−1
B̃l + B̃

∗
m

(
λ̃m − λ̃0 + ϵ

2ϑ2
)−1

(1− χ) B̃m

+ B̃∗m+1

(
λ̃m+1 − λ̃0 + ϵ

2ϑ2
)−1

(1− χ) B̃m+1. (3.16)

To prove (3.13), notice that in the first term of (3.16), the sum does not include

indices m and m+ 1, therefore, the Bloch eigenvalues λ̃l are bounded away from

the spectral edge λ̃0, uniformly in ϵ and hence, the expression
(
λ̃l − λ̃0 + ϵ

2ϑ2
)−1

is

bounded independent of ϵ, for l , m,m+ 1. Due to the non-degeneracy conditions
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assumed in (C1) and (C2), the Bloch eigenvalues λ̃m and λ̃m+1 are bounded away

from λ̃0 outside O, independent of ϵ. Hence, the last two terms in (3.16) are

bounded independent of ϵ.

Proof of (3.14): The proof of (3.14) follows from the positive-definiteness of

B̃0 and B̃1 assumed in (C1) and (C2), which makes the operator norm of the terms

in (3.11) independent of ϵ. Now, it only remains to prove (3.15).

Proof of (3.15): Write S̃(ϵ)F = S0 + S1, where, for j = 0, 1,

Sj B B̃
∗
m+j

(
λ̃m+j − λ̃0 + ϵ

2ϑ2
)−1

χ B̃m+j

= X∗m+j

(
λ̃m+j − λ̃0 + ϵ

2ϑ2
)−1
Xm+j, (3.17)

and, for j = 0, 1,

(Xm+ju) (η) =

∫
Rd

χ(η)ψ̃m+j(y, η)u(y) dy and(
X∗m+jv

)
(y) =

∫
Y
′

χ(η)ψ̃m+j(y, η)v(η) dη.

Write S̃0χ(ϵ) = S00 + S
0
1
, where, for j = 0, 1,

S0j = |Y|[ϕ̃m+j]F
−1

(
(η− ηj) · B̃j(η− ηj) + ϵ

2ϑ2I
)−1

(χ)F [ϕ̃m+j]

= (X0m+j)
∗
(
(η− ηj) · B̃j(η− ηj) + ϵ

2ϑ2I
)−1
X0m+j, (3.18)

and, for j = 0, 1,(
X0m+ju

)
(η) =

∫
Rd

χ(η)e−iy·ηϕ̃m+j(y, ηj)u(y) dy

and
(
X0m+j

)∗
v(y) =

∫
Rd

χ(η)eiy·ηϕ̃m+j(y, ηj)v(η) dη.

Observe that,

||S̃(ϵ)F− S̃0χ(ϵ)||L2(Rd)→L2(Rd) ≤ ||S0 − S
0
0||L2(Rd)→L2(Rd) + ||S1 − S

0
1||L2(Rd)→L2(Rd).

Therefore, to prove (3.15), it remains to prove that for j = 0, 1,

||Sj − S
0
j ||L2(Rd)→L2(Rd) = O

(
1

ϵ

)
.

where Sj, S0j are defined in (3.17), (3.18).

Consider

ϵ||S0 − S
0
0|| = ϵ||X

∗
m[

(
λ̃m − λ̃0 + ϵ

2ϑ2
)−1

]Xm

− (X0m)
∗
(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1
X0m||.
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Therefore,

ϵ||S0 − S
0
0|| ≤ ϵ||X

∗
m[

(
λ̃m − λ̃0 + ϵ

2ϑ2
)−1

]Xm

− X∗m
(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1
Xm||

+ ϵ||X∗m
(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1
Xm

− (X0m)
∗
(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1
X0m||. (3.19)

The first of the two terms on the right hand side (RHS) in the inequality (3.19)

is estimated by using the following chain of inequalities:

ϵ

∣∣∣∣∣(λ̃m − λ̃0 + ϵ
2ϑ2

)−1
−

(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1∣∣∣∣∣

≤ cϵ|η− η0|
3
(
λ̃m − λ̃0 + ϵ

2ϑ2
)−1 (

(η− η0) · B̃0(η− η0) + ϵ
2ϑ2I

)−1
≤ c|η− η0|

2
(
(η− η0) · B̃0(η− η0)

)−1
2ϵ|η− η0|

(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1

≤ C1.

The second term on the RHS in inequality (3.19) may be written as ϵ||(W∗
0
W0−

(W0
0
)∗W0

0
)||, where

W0 =
[(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1/2]

Xm

and

W0
0 =

[(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1/2]

X0m.

Therefore,

W0 −W
0
0 =

[(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1/2]

(Xm − X0m),

where Xm − X0m is the integral operator in L2(Rd) defined by

(Xm − X0m)(u)(η) =

∫
Rd

χ(η)e−iy·η
(
ϕ̃m(y, η) − ϕ̃m(y, η0)

)
u(y)dy.

Now, we shall analyze the boundedness of the integral operator defined above. To

this end, we note that, due to simplicity of the Bloch eigenvalue λ̃m(η, t) in O, the

Bloch eigenfunction ϕ̃m(y, η, t) is analytic H1♯(Y)-valued function with respect to

η ∈ O and for small t. As a consequence, we may write, for η ∈ O,

ϕ̃m(y, η, t) − ϕ̃m(y, η0, t) =

d∑
k=1

(ηk − η0,k)γk(y, η, t),
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where

γk(y, η, t) =

∫ 1
0

∂ϕ̃m

∂ηk
(y, η0 + s(η− η0), t)ds. (3.20)

Note that by choosing a smaller set if required, we may assume that the functions

ϕ̃m(y, η, t) and γk(y, η, t) are analytic in a complex ball, which we shall denote by

Õ.

The function ϕ̃m(y, η, t) is a solution of the equation

−(∇+ iη) · (A+ tB)(∇+ iη)ϕ̃m(y, η, t) = λ̃m(η, t)ϕ̃m(y, η, t), (3.21)

for η ∈ O, y ∈ Y and small t. In order to find an estimate for ϕ̃m(y, η, t), we begin

by separating the real and imaginary parts in the above equation. This gives rise to

a system of two real equations with the same principal parts. In [LU68, Chapter 7,

Theorem 2.1], estimates of the maximum modulus of solutions of such systems are

obtained under Dirichlet conditions on the boundary. Such estimates are obtained

for periodic boundary conditions in a similar manner. In particular, we have

max
y∈Y

|ϕ̃m(y, η, t)| ≤ C2,

where the constant C2 depends on the the coercivity constant of the matrix A+ tB

and its L∞ bound, which are uniformly bounded in t for small t. As a consequence,

the constant in this bound can be made independent of t. Further, for η ∈ O and

small t, the L2 bound of ϕ̃m(y, η, t) is bounded uniformly, therefore, we obtain

max
y,t

|ϕ̃m(y, η, t)| ≤ C3.

Similar bounds can be obtained for the derivatives of ϕ̃m(y, η, t) with respect to η,

by differentiating (3.21) with respect to η and applying [LU68, Chapter 7, Theorem

2.1] repeatedly. Finally, we obtain, for any r ∈ N,

sup
y,t

||ϕ̃m(y, ·, t)||Hr(O) <∞. (3.22)

The same bound is transferred to γk(y, η, t) by virtue of (3.20). More details of

this estimate may be found in [Bir97].

For 2r > d, the function χ(η)γk(y, η, t) is a multiplier on the set of kernels of

bounded integral operators in L2(Rd), due to [BS77, Theorem 9.1]. Now, we may

write

W0 −W
0
0 =

d∑
k=1

[(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1/2

χ(η)(ηk − η0,k)
]
Uk,
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where Uk is the integral operator in L2(Rd) defined by

(Uku)(η) =

∫
Rd

χ(η)e−iy·ηγk(y, η, t)u(y)dy,

whose kernel differs from the kernel of the Fourier transform by the multiplicative

factor χ(η)γk(y, η, t), which is a multiplier, as mentioned earlier. Therefore, Uk is

bounded. Further,

|ηk − η0,k|
(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1/2

≤ C4.

Hence,

||W0 −W
0
0 ||L2→L2 ≤ C5. (3.23)

Also, ϵ
(
(η− η0) · B̃0(η− η0) + ϵ

2ϑ2I
)−1/2

≤ ϑ−1. Therefore,

ϵ
(
||W0||L2→L2 + ||W0

0
||L2→L2) ≤ C6. Now, we can estimate the second term in

the RHS of (3.19) as

ϵ||W∗
0W0 − (W0

0)
∗W0

0 || = ϵ||W
∗
0(W0 −W

0
0) + (W0 −W

0
0)
∗W0

0 ||

≤ ϵ||W0||||W0 −W
0
0 ||+ ϵ||W0 −W

0
0 ||||W

0
0 || ≤ C7.

Finally, consider

ϵ||S1 − S
0
1|| = ϵ||X

∗
m+1[

(
λ̃m+1 − λ̃0 + ϵ

2ϑ2
)−1

]Xm+1

− (X0m+1)
∗
(
(η− η1) · B̃1(η− η1) + ϵ

2ϑ2I
)−1
X0m+1||.

Therefore,

ϵ||S1 − S
0
1|| ≤ ϵ||X

∗
m+1[

(
λ̃m+1 − λ̃0 + ϵ

2ϑ2
)−1

]Xm+1

− X∗m+1

(
(η− η1) · B̃1(η− η1) + ϵ

2ϑ2I
)−1
Xm+1||

+ ϵ||X∗m+1

(
(η− η1) · B̃1(η− η1) + ϵ

2ϑ2I
)−1
Xm+1

− (X0m+1)
∗
(
(η− η1) · B̃1(η− η1) + ϵ

2ϑ2I
)−1
X0m+1||. (3.24)

The first of the two terms on RHS in inequality (3.24) is estimated by using

the following chain of inequalities:

ϵ|
(
λ̃m+1 − λ̃0 + ϵ

2ϑ2
)−1

−
(
(η− η1) · B̃1(η− η1) + ϵ

2ϑ2I
)−1

|

≤ ϵ|
(
λ̃m+1 − λ̃1 + ϵ

2ϑ2
)−1

−
(
(η− η1) · B̃1(η− η1) + ϵ

2ϑ2I
)−1

|

≤ cϵ|η− η1|
3
(
λ̃m+1 − λ̃1 + ϵ

2ϑ2
)−1 (

(η− η1) · B̃1(η− η1) + ϵ
2ϑ2I

)−1
≤ c|η− η1|

2
(
(η− η1) · B̃1(η− η1)

)−1
2ϵ|η− η1|

(
(η− η1) · B̃1(η− η1) + ϵ

2ϑ2I
)−1

≤ C8,



3.3 Comments 79

where the first inequality follows since λ̃0 ≥ λ̃1.

The proof of the boundedness of the second term on RHS in inequality (3.24)

is similar to that of the boundedness of the second term on RHS in inequality (3.19).

□

3.3 Comments

Internal edge homogenization requires information about the shape and structure

of an internal spectral edge. This appears to be unknowable to a great extent or

only known through empirical means. However we feel that it may be possible to

bring about a classification of spectral edges in the fashion of normal forms for

eigenvalue crossings due to Hagedorn [Hag92]. Such a classification may allow us

to define homogenization results for internal spectral edges of all kinds.

This chapter is an application of the perturbation theory of spectral edges.

We feel that perturbation theory of spectral edges may be applied to many other

problems such as effective mass [AP05], Anderson localization [Ves02], diffractive

geometric optics [APR11, APR13]. Indeed, any problem that demands an analysis

of parameterized eigenvalue problems may benefit from these methods.





Chapter 4

Bloch wave approach to almost
periodic homogenization

Bloch wave homogenization is a spectral method for obtaining effective co-

efficients for periodically heterogeneous media. This method hinges on the

direct integral decomposition of periodic operators, which is not available in

a suitable form for almost periodic operators. In particular, the notion of

Bloch eigenvalues and eigenvectors does not exist for almost periodic operators.

However, we are able to recover the homogenization result in this case, by

employing a sequence of periodic approximations to almost periodic operators.

4.1 Introduction

The aim of this work is to extend the framework of Bloch wave method [CV97] to

almost periodic media. Many microstructures beyond periodic occur in nature, such

as amorphous solids like glass, motion of 2D electrons in a magnetic field [Hof76],

quasicrystals [SBGC84], etc. The mixing together of two periodic media or an

interface problem involving two different periodic media on the two sides of the

interface [BLBL15] may be thought of as an almost periodic microstructure. Fur-

ther, quasicrystals, which were discovered by Schechtman [SBGC84], are often

modeled by taking projections of periodic media in higher dimensions [KD86].

Finally, dimers and polymers have also been modeled with almost periodic po-

tentials [CdO02]. We may also note that the spectral theory of almost periodic

operators is a well studied subject [PF92]. Although almost periodic media is

completely deterministic, it serves as a bridge to stochastic descriptions of nature.

A large variety of seemingly random natural phenomena can be explained through

almost periodic structures [All83].

81
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The first author to study the homogenization of highly oscillatory almost

periodic media was Kozlov [Koz78]. Unlike periodic media, the cell problem for

almost periodic media is posed on Rd and may not have solutions in the class of

almost periodic functions. This was remedied by an abstract approach outlined

in [OZ82, JKO94] where solutions to the corrector equation were sought without

derivatives.

Bloch wave method relies on direct integral decomposition of periodic opera-

tors. For almost periodic operators, a direct integral decomposition is proposed

in [BT81], however its fibers do not have compact resolvent which prevents us

from defining Bloch eigenvalues for the almost periodic operator. To overcome this

difficulty, we make use of periodic approximations, which are defined by a “restrict

and periodize” operation, employed earlier by Bourgeat and Piatnitski [BP04] for

stochastic homogenization.

Bloch wave method is a spectral method of homogenization. In particular,

it relies on tools from representation theory for periodic operators [Mau68]. For

definiteness, consider an operator in L2(Rd) of the form

F ϵu := −
∂

∂xk

(
κkl

(
x

ϵ

)
∂u

∂xl

)
,

where the coefficients are measurable bounded, periodic and symmetric. Let Td

denote the d-dimensional torus. Then the operator F ϵ is unitarily equivalent to a

direct integral, given by

∫⊕
Td

ϵ

F ϵ(ξ)dξ, (4.1)

where the fibers F ϵ(ξ) have compact resolvent and hence each fiber has a countable

sequence of eigenvalues and eigenfunctions {λϵn(ξ), ϕ
ϵ
n(x, ξ)}n∈N, which are known

as Bloch eigenvalues and eigenfunctions when considered as functions of ξ ∈ Td/ϵ.

Define l th Bloch coefficient of u by

(Bϵlu)(ξ) =

∫
Rd

ϕϵ
l
(x, ξ)u(x)e−ix·ξ dx, l ∈ N.

Then as a consequence of the representation (4.1), the equation F ϵuϵ = f,

where f ∈ L2(Rd), can be written as a cascade of equations in the Bloch space, viz.,
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λϵ1(ξ)B
ϵ
1(u

ϵ)(ξ) = Bϵ1(f)

λϵ2(ξ)B
ϵ
2(u

ϵ)(ξ) = Bϵ2(f)

...

λϵl (ξ)B
ϵ
l (u

ϵ)(ξ) = Bϵl (f)

...

Homogenized equation can be recovered by passing to the limit in the first equation.

The rest of the equations do not contribute to homogenization. It is evident that

the representation (4.1) is crucial in this method.

For almost periodic operators, we introduce periodic approximations on cubes

of side length 2πR which will add yet another parameter to the problem. We

perform a Bloch wave analysis of the approximation and pass to the limit in Bloch

space, first as ϵ → 0, followed by R → ∞. We mention some of the interesting

techniques employed in this chapter. The approximate Bloch spectral problems

are posed on varying Hilbert spaces indexed by R. The approximate corrector

and approximate homogenized tensors are obtained in terms of the first Bloch

eigenvector and Bloch eigenvalue of the periodization. The homogenization limit

is given a unified treatment by working in the Besicovitch space of almost periodic

functions. We will prove a module containment result for the correctors which is

of independent interest. The proof of homogenization theorem for almost periodic

media (Theorem 4.8) is new to our knowledge.

In a previous work [1], we have considered perturbations of coefficients of an

operator which make spectral edges simple. This work may also be thought of in

the same vein. The almost periodic operator is expected to have a Cantor like

spectrum [DFG19], and hence ill-defined spectral edges. Periodic approximations

serve to regularize the spectral edges.

Bloch wave method has also been extended to other non-periodic media such

as Hashin-Shtrikman structures [BCG+18]. A notion of Bloch-Taylor waves for

aperiodic media has been introduced in [BG19] using regularized correctors.

The contents of this chapter form a section of the preprint [2].

4.1.1 Plan of Chapter

The notation and definitions that will be required in the text have already been

introduced in Section 1.6 of Chapter 1. In Section 4.3, we will discuss two kinds
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of periodic approximations for almost periodic functions. In Section 4.4, Bloch

wave analysis of periodic approximations is performed. In Section 4.5, we prove

the homogenization result by first taking the limit ϵ → 0, followed by the limit

R→ ∞ in the Bloch transform of the periodic approximations. In Section 4.6, we

prove that the homogenized coefficients of the periodic approximations converge

to those of the almost periodic operator. In Section 4.7, we prove that the higher

Bloch modes do not contribute to the homogenization process.

4.2 Almost Periodic Differential Operators

Consider the almost periodic second-order elliptic operator in divergence form

given by

Au := −div(A∇u) = −
∂

∂yk

(
akl(y)

∂u

∂yl

)
, (4.2)

where summation over repeated indices is assumed and the coefficients satisfy the

following assumptions:

(D1) The coefficients A = (akl(y)) are continuous bounded real-valued almost

periodic functions defined on Rd. In other words, akl ∈ AP(Rd).

(D2) The matrix A = (akl) is symmetric, i.e., akl(y) = alk(y) ∀y ∈ Rd.

(D3) Further, the matrix A is coercive, i.e., there exists an α > 0 such that

∀ v ∈ Rd and a.e. y ∈ Rd, ⟨A(y)v, v⟩ ≥ α||v||2. (4.3)

Let Ω be an open set in Rd. We are interested in the homogenization of the

following equation posed in H1(Ω)

Aϵuϵ := −
∂

∂xk

(
aϵkl (ϵ)

∂uϵ

∂xl

)
= f, (4.4)

where f ∈ L2(Ω) and aϵ
kl
(ϵ) B akl

(
x
ϵ

)
. Suppose that uϵ converges weakly to a limit

u ∈ H1(Ω). We shall prove in the course of this chapter that u satisfies an equation

of the form

A∗u := −
∂

∂xk

(
a∗kl (x)

∂u

∂xl

)
= f, (4.5)

and we also identify the coefficients a∗
kl

. The assumption of symmetry is not essential

for the purposes of homogenization since it is possible to define a dominant Bloch

mode [SGV04] in the non-selfadjoint case.
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Homogenization of almost periodic media was first carried out by Ko-

zlov [Koz78] using quasiperiodic approximations. Subsequently, an abstract ap-

proach was given in [OZ82, JKO94] which is described in Subsection 1.6.2.

Some notation that we make use of, is listed below:

• We shall call a bounded continuous matrix-valued function A almost periodic

if each of its entries is an almost periodic function.

• The notation ≲ is shorthand for ≤ with a multiplicative constant which does

not depend on ϵ and R but may depend on the dimension d, L∞ bound of A,

the coercivity constant α, etc.

• The notation −

∫
G

b(t)dt denotes the average
1

|G|

∫
G

b(t)dt of a function b

over G ⊂ Rd. Sometimes, the notation MG(b) is also used.

• For L > 0, let YL denote the set [−Lπ, Lπ)d.

4.3 Periodic Approximations of Almost Periodic

Functions

Equation (4.4) is not amenable to a Bloch wave analysis due to non-periodicity of

the coefficients. Hence, we shall introduce some periodic approximations to the

coefficients of the operator (4.2). These periodic approximations follow the simple

principle of “restrict and periodize”. Given f ∈ AP(Rd), define

fR(y) = f(y) for y ∈ YR = [−Rπ, Rπ)d, (4.6)

and extend to the whole of Rd by periodization, i.e, fR(y + 2πRp) = f(y) for all

p ∈ Zd. Hence, the periodic approximation so constructed belongs to L∞♯ (YR).

The sequence fR may not converge in L∞(Rd). In fact, the functions which

can be written as a uniform limit of periodic functions are called as limit-periodic

functions [LZ82] and they form a subclass of almost periodic functions. However,

the sequence is convergent in L2loc(R
d) as well as uniformly on compact subsets of

Rd. It is unclear if the sequence fR converges to f in B2(Rd). We remark here that

convergence in L2loc(R
d) does not imply convergence in B2(Rd).

Remark 4.1. Another periodic approximation to almost periodic functions is

constructed in [Shu78]. Roughly speaking, given a f ∈ AP(Rd), there is a sequence

of numbers (Tn)n∈N going to ∞ and a sequence of TnY-periodic functions Pn such
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that ||u−Pn||∞,TnY → 0 as n→ ∞. The notation || · ||∞,TnY implies that the L∞ norm

is taken over the cube TnY = [−Tnπ, Tnπ)
d. The proof of this theorem involves

approximation of irrationals by rationals by Dirichlet’s Approximation Theorem.

Clearly, either of these approximations may be used for our purposes. Note that

the approximations in [Shu78] have the advantage that they are smooth being

trigonometric polynomials; however, the sequence (Tn)n∈N cannot be chosen.

4.3.1 Periodic Approximations of Almost Periodic Opera-

tors

For R > 0, we denote by AR = (aR
kl
(y))d

k,l=1 the periodic approximation of A =

(akl(y))
d
k,l=1 at level R, as explained in (4.6), i.e., for 1 ≤ k, l ≤ d,aRkl(y) = akl(y) for y ∈ YR

aR
kl
(y+ 2πRp) = akl(y) for p ∈ Zd

(4.7)

The following operator will serve as a periodic approximation to A.

ARu := −div(AR∇u) = −
∂

∂yk

(
aRkl(y)

∂u

∂yl

)
.

Such an approximation has been considered in [BP04].

4.4 Bloch wave Analysis for Periodic Approxi-

mations

In this section, we shall perform a Bloch wave analysis for the periodic approxima-

tions of the operator in (4.2). In particular, we shall study, for each fixed R > 0,

the Bloch waves for the operators in L2(Rd) given by

ARu := −div(AR∇u) = −
∂

∂yk

(
aRkl(y)

∂u

∂yl

)
. (4.8)

Let Y ′
R
B

[
− 1
2R
, 1
2R

)d
denote a basic cell for the dual lattice corresponding to

2πRZd. The operator AR can be written as the direct integral

⊕∫
Y
′

R

AR(η) dη, where

AR(η) = e−iη·yAReiη·y = −

(
∂

∂yk
+ iηk

)
aRkl(y)

(
∂

∂yl
+ iηl

)
, (4.9)



4.4 Bloch wave Analysis for Periodic Approximations 87

is an unbounded operator in L2♯(YR). As a consequence, the spectrum of the operator

AR is the union of spectra of AR(η) as η varies in Y ′
R

[RS78, p. 284]. It can be

shown that the operators AR(η) have compact resolvent [BLP11]. Therefore, AR(η)

has a sequence of eigenvalues and eigenvectors

η 7→ (λRm(η), ϕ
R
m(y;η)),m = 1, 2, . . . , (4.10)

which are called Bloch eigenvalues and eigenvectors.

Remark 4.2. We shall choose ||ϕR
1
(·;η)||L2

♯
(YR)

= Rd/2 and ϕR
1
(y; 0) = 1

(2π)d/2
∀R > 0.

4.4.1 Bloch Decomposition of L2(Rd)

In this section, we shall state the theorem on decomposition of functions in L2(Rd)

using Bloch waves. We shall not go through the details of the proof, which may be

found in [BLP11], [SGV04] and [SGV05].

Consider the unbounded operator defined in L2(Rd)

AR,ϵu := −div(AR,ϵ∇u) = −
∂

∂xk

(
aR,ϵkl (x)

∂u

∂xl

)
, (4.11)

where aR,ϵkl (x) B a
R
kl

(
x

ϵ

)
.

By homothecy, the Bloch eigenvalues and Bloch eigenvectors for the opera-

tor (4.11) are

λR,ϵm (ξ) = ϵ−2λRm(ϵξ), ϕ
R,ϵ
m (x; ξ) = ϕRm

(
x

ϵ
; ϵξ

)
, (4.12)

where λRm(η) and ϕRm(η) are defined in (4.10).

Theorem 4.3. Let R > 0. Let g ∈ L2(Rd). Define the mth Bloch coefficient of

g as

BR,ϵm g(ξ) B

∫
Rd

g(x)e−ix·ξϕR,ϵm (x; ξ) dx, m ∈ N, ξ ∈ ϵ−1Y
′

R. (4.13)

1. The following inverse formula holds

g(y) =

∫
ϵ−1Y

′

R

∞∑
m=1

BR,ϵm g(ξ)ϕ
R,ϵ
m (x; ξ)eix·ξ dξ. (4.14)

2. Parseval’s identity

||g||2
L2(Rd)

=

∞∑
m=1

∫
ϵ−1Y

′

R

|BR,ϵm g(ξ)|
2 dξ. (4.15)
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3. Plancherel formula For f, g ∈ L2(Rd), we have∫
Rd

f(y)g(y)dy =

∞∑
m=1

∫
ϵ−1Y

′

R

BR,ϵm f(ξ)B
R,ϵ
m g(ξ)dξ. (4.16)

4. Bloch Decomposition in H−1(Rd) For an element F = u0(x) +
∑N

j=1
∂uj(x)

∂xj

of H−1(Rd), the following limit exists in L2(ϵ−1Y ′
R
):

BR,ϵm F(ξ) =

∫
Rd

e−ix·ξ

{
u0(x)ϕR,ϵm (x; ξ) + i

N∑
j=1

ξjuj(x)ϕR,ϵm (x; ξ)

}
dx

−

∫
Rd

e−ix·ξ
N∑
j=1

uj(x)
∂ϕR,ϵm
∂xj

(x; ξ)dx. (4.17)

The definition above is independent of the particular representative of F.

5. Finally, for g ∈ D(AR,ϵ),

BR,ϵm (AR,ϵg)(ξ) = λR,ϵm (ξ)BR,ϵm g(ξ). (4.18)

4.4.2 Bloch Transform converges to Fourier Transform

The following lemma says that as ϵ→ 0, the first Bloch coefficient of a function

converges to its Fourier transform, which is defined as û(ξ) =
∫
Rd

u(y)e−ix·ξ dy.

This is a consequence of the Lipschitz continuity of ϕR
1
(y;η) in η close to η = 0,

and the choice of normalization of the first Bloch eigenfunctions (See Remark 4.2).

For a proof, see [CV97].

Lemma 4.4. Let R > 0. Let g, gϵ ∈ L2(Rd) be such that the support of gϵ is

contained in a fixed compact subset K ⊂ Rd, independent of ϵ. If gϵ converges

weakly to g in L2(Rd), then we have χϵ−1UR
BR,ϵ
1
gϵ(ξ) ⇀ ĝ(ξ) in L2(Rd

ξ
)-weak.

4.4.3 Regularity Properties of Bloch eigenvalues and

eigenvectors

In physical applications, the regularity properties of Bloch eigenvalues and eigenvec-

tors with respect to the dual parameter η ∈ Y ′
R

plays an important role, for example,

see: [ACP+04], [AP05], [APR11]. It is a simple consequence of the Courant-Fischer

minmax principle that Bloch eigenvalues are Lipschitz continuous in the dual

parameter [CV97]. However, such limited regularity is usually not sufficient for

our purposes. We require the following theorem about the behavior of the first

Bloch eigenvalue and eigenvector in a neighborhood of 0 ∈ Y ′
R
.
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Theorem 4.5. There is a neighborhood UR B {η ∈ Y
′

R
: |η| < δR}, where δR is

a positive real number, such that the first Bloch eigenvalue λR
1
(η) is analytic

for η ∈ UR and the first Bloch eigenvector ϕR
1
(η) ∈ H1♯(YR) may be chosen to be

analytic for η ∈ UR.

A proof of Theorem 4.5 that uses the notion of infinite-dimensional de-

terminants can be found in [CV97]. Another proof that uses the Kato-Rellich

Theorem [RS78], [Kat95] may be found in [SGV04].

Remark 4.6. The radius δR of the neighborhood UR depends on the gap between

the first and second Bloch eigenvalues of the operator AR. The limit operator of AR

is the almost periodic operator A which often has a Cantor-like spectrum [DFG19].

Hence, we expect the spectral gap to vanish in the limit R→ ∞. Therefore, the

neighborhood UR is expected to shrink to 0 in the limit R→ ∞.

4.4.4 Derivatives of the first Bloch eigenvalue and eigen-

function

In the theory of periodic homogenization [BLP11], homogenized coefficients are

given in terms of solutions of the cell problem which is an equation posed on the

basic periodic cell. For the Rth periodic approximation (4.8), we recall the cell

problem and the homogenized coefficients below.

The homogenized coefficients for the Rth periodic approximation are given by:

aR,∗kl =
1

|YR|

∫
YR

aRkl(y)dy+
1

|YR|

∫
YR

aRkp(y)
∂wR,l

∂yp
dy, (4.19)

where wR,p ∈ H1♯(YR) satisfy the following cell problems for 1 ≤ p ≤ d:

ARwR,p = −
∂

∂yk

(
aRkl (y)

∂wR,p

∂yl

)
=
∂aR

lp

∂yl
(y) in YR. (4.20)

The functions wR,p are called correctors and wR is called corrector field. We

recall that λR
1
(η) and ϕR

1
(η) are analytic in UR ⊂ Y

′

R
. The proof of the following

theorem is standard and may be found in [CV97] or [SGV04].

Theorem 4.7. The first Bloch eigenvalue and eigenfunction of the Rth periodic

approximation AR satisfy:

1. λR
1
(0) = 0.
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2. The eigenvalue λR
1
(η) has a critical point at η = 0, i.e.,

∂λR
1

∂ηs
(0) = 0,∀s = 1, 2, . . . , d. (4.21)

3. For s = 1, 2, . . . , d, the derivative of the eigenvector (∂ϕR
1
/∂ηs)(0) satisfies:

(∂ϕR
1
/∂ηs)(y; 0) − iϕ

R
1
(y; 0)wR,s(y) is a constant in y.

4. The Hessian of the first Bloch eigenvalue at η = 0 is twice the homoge-

nized matrix aR,∗
kl

:

1

2

∂2λR
1

∂ηk∂ηl
(0) = aR,∗kl . (4.22)

4.4.5 Boundedness of Corrector Field

We will show that the sequence (∇wR,p)R>0 is bounded in B2(Rd), independent of

R. We know that for each R > 0 and 1 ≤ p ≤ d, ∇wR,p ∈ (L2♯(YR))
d ⊂ (B2(Rd))d

satisfies

M
(
AR∇wR,p∇wR,p

)
= −

d∑
l=1

M

(
aRlp
∂wR,p

∂yl

)
(4.23)

Using the coercivity and boundedness of the matrix A, we obtain:

α||∇wR,p||2
(L2

♯
(YR))d

≤ C||∇wR,p||(L2
♯
(YR))d

From the last equation, we obtain the norm-boundedness of (∇wR,p) in (L2♯(YR))
d

and hence in (B2(Rd))d.

4.4.6 Boundedness of homogenized tensors

Due to the boundedness of derivatives of the correctors proved in Subsection 4.4.5,

the sequence of numbers aR,∗
kl

, defined in (4.19), is bounded independently of R.

Further, it follows from the identification (4.22) that the sequence of numbers
1
2

∂2λR
1

∂ηk∂ηl
(0) is bounded. Hence, there is a subsequence, still labeled by R, for which

the sequence 1
2

∂2λR
1

∂ηk∂ηl
(0) converges. We shall call this limit as a∗

kl
, i.e.,

lim
R→∞

∂2λR
1

∂ηk∂ηl
(0) = 2a∗kl. (4.24)
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4.5 Homogenization Result

In this section, we shall state the homogenization result for almost periodic media

and prove it using the Bloch wave method. It will be seen in a further section that

the coefficients a∗
kl
, defined in (4.24), coincide with the homogenized coefficients

for almost periodic media [OZ82]. In this section, we shall assume summation over

repeated indices for ease of notation.

Theorem 4.8. Let Ω be an arbitrary domain in Rd and f ∈ L2(Ω). Let

uϵ ∈ H1(Ω) be such that uϵ converges weakly to u∗ in H1(Ω), and

Aϵuϵ = f in Ω. (4.25)

Then

1. For all k = 1, 2, . . . , d, we have the following convergence of fluxes:

aϵkl(x)
∂uϵ

∂xl
(x) ⇀ a∗kl

∂u∗

∂xl
(x) in L2(Ω)-weak. (4.26)

2. The limit u∗ satisfies the homogenized equation:

Ahomu∗ = −
∂

∂xk

(
a∗kl
∂u∗

∂xl

)
= f in Ω, (4.27)

where (a∗
kl
)1≤k,l≤d are given in (4.24).

The proof of Theorem 4.8 is divided into the following steps. We begin by

localizing the equation (4.25) which is posed on Ω, so that it is posed on Rd. We

take the first Bloch transform BR,ϵ
1

of this equation and pass to the limit ϵ→ 0,

followed by the limit R→ ∞. The proof relies on the analyticity of the first Bloch

eigenvalue and eigenfunction in a neighborhood of 0 ∈ Y ′
R
. The limiting equation is

an equation in Fourier space. The homogenized equation is obtained by taking the

inverse Fourier transform.

4.5.1 Localization

Let ψ0 be a fixed smooth function supported in a compact set K ⊂ Rd. Since uϵ

satisfies Aϵuϵ = f, ψ0uϵ satisfies

AR,ϵ(ψ0u
ϵ)(x) = ψ0f(x) + g

ϵ(x) + hR,ϵ(x) + lR,ϵ(x) in Rd, (4.28)
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where

gϵ(x) B −
∂ψ0

∂xk
(x)aϵkl(x)

∂uϵ

∂xl
(x), (4.29)

hR,ϵ(x) B −
∂

∂xk

(
∂ψ0

∂xl
(x)aR,ϵkl (x)u

ϵ(x)

)
, (4.30)

lR,ϵ(x) B −
∂

∂xk

(
ψ0(x)

(
aR,ϵkl (x) − a

ϵ
kl(x)

) ∂uϵ
∂xl

(x)

)
. (4.31)

While the sequence gϵ is bounded in L2(Rd), the sequences hR,ϵ and lR,ϵ

are bounded in H−1(Rd). Taking the first Bloch transform of both sides of the

equation (4.28), we obtain for ξ ∈ ϵ−1UR a.e.

λR,ϵ1 (ξ)BR,ϵ1 (ψ0u
ϵ)(ξ) = BR,ϵ1 (ψ0f)(ξ) + B

R,ϵ
1 g

ϵ(ξ) + BR,ϵ1 h
R,ϵ(ξ) + BR,ϵ1 l

R,ϵ(ξ)

(4.32)

We shall now pass to the limit ϵ → 0, followed by the limit R → ∞ in the

equation (4.32).

4.5.2 Limit ϵ→ 0

Limit of λR,ϵ
1
(ξ)BR,ϵ

1
(ψ0u

ϵ)

We substitute the power series expansion of the first Bloch eigenvalue about η = 0

in λR,ϵ
1
(ξ)BR,ϵ

1
(ψ0u

ϵ) and then pass to the limit ϵ→ 0 in L2loc(R
d
ξ
)-weak by applying

Lemma 4.4 to obtain:

1

2

∂2λR
1

∂ηs∂ηt
(0)ξsξtψ̂ou∗(ξ). (4.33)

Limit of BR,ϵ
1
(ψ0f)

A simple application of Lemma 4.4 yields the convergence of BR,ϵ
1
(ψ0f) to (ψ0f)̂ in

L2loc(R
d
ξ
)-weak.

Limit of BR,ϵ
1
gϵ

The sequence gϵ as defined in (4.29) is bounded in L2(Rd) and hence has a weakly

convergent subsequence with limit g∗ ∈ L2(Rd). This sequence is supported in

a fixed set K. Also, note that the sequence σϵk(x) B a
ϵ
kl(x)

∂uϵ

∂xl
(x) is bounded in

L2(Ω), hence has a weakly convergent subsequence whose limit is denoted by σ∗
k

for

k = 1, 2, . . . , d. Extend σ∗
k

by zero outside Ω and continue to denote the extension
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by σ∗
k
. Thus, g∗ is given by −∂ψ0

∂xk
σ∗
k
. Therefore, by Lemma 4.4, we obtain the

following convergence in L2loc(R
d
ξ
)-weak:

χϵ−1UR
(ξ)BR,ϵ1 g

ϵ(ξ) ⇀ −

(
∂ψ0

∂xk
(x)σ∗k(x)

)̂
(ξ). (4.34)

Notice that the limit is independent of R.

Limit of BR,ϵ
1
hR,ϵ

We have the following weak convergence for BR,ϵ
1
hR,ϵ in L2loc(R

d
ξ
).

lim
ϵ→0 χϵ−1UR

(ξ)BR,ϵ1 h
R,ϵ(ξ) = −iξka

R,∗
kl

(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ) (4.35)

We shall prove this in the following steps.

Step 1 By the definition of the Bloch transform (4.17) for elements of H−1(Rd),

we have

BR,ϵ1 h
R,ϵ(ξ) = −iξk

∫
Rd

e−ix·ξ
∂ψ0

∂xl
(x)aR,ϵkl (x)u

ϵ(x)ϕR
1

(
x

ϵ
; ϵξ

)
dx

+

∫
Rd

e−ix·ξ
∂ψ0

∂xl
(x)aR,ϵkl (x)u

ϵ(x)
∂ϕR

1

∂xk

(
x

ϵ
; ϵξ

)
dx. (4.36)

Step 2 The first term on RHS of (4.36) is the Bloch transform of

−iξk
∂ψ0

∂xl
(x)aR,ϵ

kl
(x)uϵ(x) which converges weakly to −iξkM(aR

kl
)
(
∂ψ0

∂xl
(x)u∗(x)

)
.

Step 3 Now, we analyze the second term on RHS of (4.36). In order to do

this, we use the analyticity of first Bloch eigenfunction with respect to the dual

parameter η near 0. We have the following power series expansion in H1♯(YR) for

ϕR
1
(η) about η = 0:

ϕR1(y;η) = ϕ
R
1(y; 0) + ηs

∂ϕR
1

∂ηs
(y; 0) + γR(y;η). (4.37)

We know that γR(y; 0) = 0 and (∂γR/∂ηs)(y; 0) = 0, therefore, γR(·;η) = O(|η|2) in

L∞(UR;H
1
♯(YR)). We also have (∂γR/∂yk)(·;η) = O(|η|

2) in L∞(UR;L
2
♯(YR)). Now,

ϕR,ϵ1 (x; ξ) = ϕR1

(
x

ϵ
; ϵξ

)
= ϕR1

(
x

ϵ
; 0

)
+ ϵξs

∂ϕR
1

∂ηs

(
x

ϵ
; 0

)
+ γR

(
x

ϵ
; ϵξ

)
. (4.38)

Differentiating the last equation with respect to xk, we obtain

∂

∂xk
ϕR1

(
x

ϵ
; ϵξ

)
= ξs

∂

∂xk

∂ϕR
1

∂ηs

(
x

ϵ
; 0

)
+ ϵ−1

∂γR

∂yk

(
x

ϵ
; ϵξ

)
. (4.39)
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For ξ belonging to the set {ξ : ϵξ ∈ UR and |ξ| ≤M}, we have

∂γR

∂yk
(·; ϵξ) = O(|ϵξ|2) = ϵ2O(|ξ|2) ≤ CM2ϵ2. (4.40)

As a consequence,

ϵ−2
∂γR

∂yk
(x/ϵ; ϵξ) ∈ L∞loc(R

d
ξ ;L

2
♯(ϵYR)). (4.41)

The second term on the RHS of (4.36) is given by

χϵ−1UR
(ξ)

∫
K

e−ix·ξ
∂ψ0

∂xl
(x)aRkl

(
x

ϵ

)
uϵ(x)

∂

∂xk

(
ϕR
1

(
x

ϵ
; ϵξ

))
dx. (4.42)

Substituting (4.39) in (4.42), we obtain

χϵ−1UR
(ξ)

∫
K

e−ix·ξ
∂ψ0

∂xl
(x)aRkl

(
x

ϵ

)
uϵ(x)

[
ξs
∂

∂xk

∂ϕR
1

∂ηs

(
x

ϵ
; 0

)
+ ϵ−1

∂γR

∂yk

(
x

ϵ
; ϵξ

)]
dx.

(4.43)

In the last expression, the term involving γR goes to zero as ϵ→ 0 in view of (4.40),

whereas the other term has the following limit due to the strong convergence of uϵ

and weak convergence of
(
aR
kl
(x/ϵ) ∂

∂xk

(
∂ϕR

1

∂ηs
(x/ϵ; 0)

))
:

M

(
aRkl(y)

∂

∂yk

(
∂ϕR

1

∂ηs
(y; 0)

))
ξs

∫
Rd

e−ix·ξ
∂ψ0

∂xl
(x)u∗(x)dx. (4.44)

Step 4 By Theorem 4.7 and Remark 4.2, it follows that

M

(
aRkl(y)

∂

∂yk

(
∂ϕR

1

∂ηs
(y; 0)

))
= −i(2π)−d/2M

(
aRkl(y)

∂wR,s

∂yk
(y)

)
. (4.45)

Therefore, we have the following convergence in L2loc(R
d
ξ
)-weak:

χϵ−1UR
(ξ)BR,ϵ1 h

R,ϵ(ξ) ⇀ −iξs

{
M(aRkl) +M

(
aRkl(y)

∂wR,s

∂yk
(y)

)} (
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ)

= −iξsa
R,∗
kl

(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ) (4.46)

Limit of BR,ϵ
1
lR,ϵ

Let vR,ϵ
k
B ψ0(x)(a

R,ϵ
kl
(x) − aϵ

kl
(x))∂u

ϵ

∂xl
(x), then by the definition of the Bloch

transform (4.17) for elements of H−1(Rd), we have

BR,ϵ1 l
R,ϵ(ξ) = −iξk

∫
Rd

e−ix·ξvR,ϵk (x)ϕR
1

(
x

ϵ
; ϵξ

)
dx

+

∫
Rd

e−ix·ξvR,ϵk (x)
∂ϕR

1

∂xk

(
x

ϵ
; ϵξ

)
dx. (4.47)
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The sequence vR,ϵ
k

is bounded in L2(Rd), hence converges weakly to a limit

vR
k
∈ L2(Rd). The first term on the RHS of (4.47) is the Bloch transform of −iξkvR,ϵk ,

hence by Lemma 4.4, it converges to −iξk(v
R
k
(x))̂(ξ).

Using equation (4.39), the second term on RHS of (4.47) can be written as∫
Rd

e−ix·ξvR,ϵk (x)

[
ξs
∂

∂xk

∂ϕR
1

∂ηs

(
x

ϵ
; 0

)
+ ϵ−1

∂γR

∂yk

(
x

ϵ
; ϵξ

)]
dx. (4.48)

The second term in the above expression goes to 0 in view of (4.40). The

sequence zR,ϵs (x) B vR,ϵ
k
(x) ∂

∂xk

∂ϕR
1

∂ηs

(
x
ϵ
; 0

)
is bounded in L2(Rd). Therefore, it has a

weakly convergent subsequence whose limit we shall call zRs . The second term on

RHS of (4.47) converges to the Fourier transform of ξszRs .

lim
ϵ→0BR,ϵ1 lR,ϵ → −iξk(v

R
k(x))̂(ξ) + ξs(z

R
s )̂. (4.49)

Finally, passing to the limit in (4.32) as ϵ → 0 by applying equa-

tions (4.33), (4.34), (4.35) and (4.49) we get:

1

2

∂2λR
1

∂ηs∂ηt
(0)ξsξtψ̂ou∗(ξ) =(ψ0f)̂(ξ) −

(
∂ψ0

∂xk
(x)σ∗k(x)

)̂
(ξ)

− iξsa
R,∗
kl

(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ) − iξk(v

R
k(x))̂(ξ) + ξs(z

R
s )̂.

(4.50)

4.5.3 Limit R→ ∞
In the equation (4.50) above, we pass to the limit R→ ∞ as follows:

Firstly, observe that

||vRk ||L2(Rd) ≤ lim inf
ϵ→0 ||vR,ϵk ||L2(Rd) ≤ Cmax

l
||aR,ϵkl − aϵkl||L∞(K) = Cmax

l
||aRkl − akl||L∞(ϵK),

due to the weak lower semicontinuity of norm. Hence, vR
k
→ 0 as R→ ∞.

Secondly,

||zRs ||L2(Rd) ≤ lim inf
ϵ→0 ||zR,ϵs ||L2(Rd) ≤ Cmax

k,l
||aR,ϵkl − aϵkl||L∞(K) = Cmax

k,l
||aRkl − akl||L∞(ϵK),

due to the weak lower semicontinuity of norm. Hence, zRs → 0 as R→ ∞.

As a consequence we obtain the following limit equation in the Fourier space:

a∗klξkξlψ̂ou
∗(ξ) = ψ̂0f−

(
∂ψ0

∂xk
(x)σ∗k(x)

)̂
(ξ) − iξka

∗
kl

(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ). (4.51)
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4.5.4 Proof of the homogenization result

Taking the inverse Fourier transform in the equation (4.51) above, we obtain the

following:

(Ahom(ψ0u
∗)(x)) = ψ0f−

∂ψ0

∂xk
(x)σ∗k(x) − a

∗
kl

∂

∂xk

(
∂ψ0

∂xl
(x)u∗(x)

)
, (4.52)

where the operator Ahom is defined in (4.27). At the same time, calculating using

Leibniz rule, we have:

Ahom(ψ0u
∗)(x) = ψ0(x)A

homu∗(x) − a∗kl
∂

∂xk

(
∂ψ0

∂xl
(x)u∗(x)

)
− a∗kl

∂ψ0

∂xk
(x)
∂u∗

∂xl
(x)

(4.53)

Using equations (4.52) and (4.53), we obtain

ψ0(x)
(
Ahomu∗ − f

)
(x) =

∂ψ0

∂xk

[
a∗kl
∂u∗

∂xl
(x) − σ∗k(x)

]
. (4.54)

Let ω be a unit vector in Rd, then ψ0(x)eix·ω ∈ D(Ω). On substituting in the

above equation, we get, for all k = 1, 2, . . . , d and for all ψ0 ∈ D(Ω),

ψ0(x)

[
a∗kl
∂u∗

∂xl
(x) − σ∗k(x)

]
= 0. (4.55)

Let x0 be an arbitrary point in Ω and let ψ0(x) be equal to 1 near x0, then for a

small neighborhood of x0:

for k = 1, 2, . . . , d,

[
a∗kl
∂u∗

∂xl
(x) − σ∗k(x)

]
= 0 (4.56)

However, x0 ∈ Ω is arbitrary, so that

Ahomu∗ = f and σ∗k(x) = a
∗
kl

∂u∗

∂xl
(x). (4.57)

Thus,we have obtained the limit equation in the physical space. This finishes the

proof of Theorem 4.8.

4.6 Identification of the Homogenized Tensor

In this section, we recall that a∗
kl

can be identified with the homogenized tensor

for the almost periodic operator Aϵ [Koz78, OZ82, JKO94] and that a∗
kl

does not

depend on any subsequence of aR,∗
kl

. The study of homogenization of almost periodic

media was initiated by Kozlov [Koz78] who also obtained a convergence rate for a

subclass of quasiperiodic media. Subsequently, an abstract approach which seeks

solutions without derivatives was explained in [OZ82, JKO94] and is described in

the next subsection.
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4.6.1 Cell Problem for Almost Periodic Media

We begin by introducing the cell problem for almost periodic operator A. Consider

the set S = {∇ϕ : ϕ ∈ Trig(Rd;R)} as a subset of (B2(Rd))d, the Hilbert space of

all d-tuples of B2(Rd) functions. Let W denote the closure of S in (B2(Rd))d. Let

U = (u1, u2, . . . , ud) ∈W and V = (v1, v2, . . . , vd) ∈W. On W, define the bilinear

form

a(U,V) BM(AU · V). (4.58)

Then clearly the bilinear form a is continuous and coercive on W. Let ξ ∈ Rd.

Define a linear form on W by

lξ(V) B −M(Aξ · V), (4.59)

for V ∈ W. The linear form lξ is continuous on W. As a consequence, by Lax-

Milgram lemma, the problem

a(Nξ, V) = lξ(V), ∀V ∈W (4.60)

has a solution Nξ ∈W and by the classical theory of almost periodic homogeniza-

tion [OZ82], the homogenized coefficients for Aϵ are given by

q∗kl =M (ek ·Ael + ek ·AN
el) , (4.61)

where ei denotes the unit vector in Rd with 1 in the ith place and 0 elsewhere.

Since periodic media are also almost periodic, a question arises as to whether

the formulation (4.60) is consistent with (4.20).

We restate the two cell problems here in their variational formulations:

The corrector wR,ξ satisfies

MYR

(
AR∇wR,ξ · ∇ϕ

)
= −MYR

(
ARξ · ∇ϕ

)
(4.62)

for all ϕ ∈ H1♯(YR) whereas Nξ satisfies

M
(
ARNR,ξ · V

)
= −M(ARξ · V), (4.63)

for all V ∈W.

Lemma 4.9. Let wR,ξ and NR,ξ satisfy (4.62) and (4.63) respectively, then it

holds that

NR,ξ = ∇wR,ξ.
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Proof. We will show that ∇wR,ξ solves the variational formulation (4.63). To see

this, it is enough to use test functions V ∈ S. Further, due to linearity, it is enough

to use test functions of the form V = ∇(eiy·η). Now, observe that if η ∈ 2πRZd,

then ∇wR,ξ satisfies (4.63) since it reduces to equation (4.62) due to the equality

M(f) = MYR(f) for YR-periodic functions f. On the other hand, if η < 2πRZd,

once again ∇wR,ξ satisfies (4.63), both sides of which are identically zero, because

M(f(·)eiy·η) = 0 whenever η is not among the frequencies of f. Hence, in either

case, ∇wR,ξ satisfies equation (4.63). Finally, due to uniqueness,

NR,ξ = ∇wR,ξ.

□

Given an almost periodic function f, let Λ(f) denote the set of all ξ ∈ Rd

such thatM(fe−ix·ξ) , 0. Let Mod(f) be the Z-module generated by Λ(f). The Z-

module Mod(f) shall be referred to as the frequency module of f. In the argument

above, we have shown that Mod(NR,ξ) ⊆Mod(AR). This argument can be readily

generalized to a module containment theorem for the correctors. In particular,

we may prove that Mod(Nξ) ⊆ Mod(A). To paraphrase, the frequencies of the

correctors are generated from the frequencies of the coefficients. To this end, we

define a closed subspace of the Hilbert space B2(Rd) in the following manner.

Consider the set of all real trigonometric polynomials whose exponents come from

Mod(A) and call it TrigA(Rd;R). The closure of TrigA(Rd;R) in B2(Rd) will be

denoted by B2
A
(Rd). Consider the set SA = {∇ϕ : ϕ ∈ TrigA(Rd)} as a subset of

(B2
A
(Rd))d, the Hilbert space of all d-tuples of B2

A
(Rd) functions. Let WA denote

the closure of SA in (B2(Rd))d. To begin with, we prove that the frequencies of a

given function u ∈ B2
A
(Rd) belong to Mod(A).

Lemma 4.10. Let u ∈ B2
A
(Rd). Let ξ ∈ Rd such that M(u · eix·ξ) , 0, then

ξ ∈Mod(A).

Proof. Since u ∈ B2
A
(Rd), we have a sequence of trigonometric polynomials un ∈

TrigA(R
d) such that M(|un − u|

2) → 0. Let ξ <Mod(A), then

|M(u · eix·ξ)| ≤ |M(un · e
ix·ξ)|+ |M((un − u) · e

ix·ξ)|

= |M((un − u) · e
ix·ξ)|

≤
(
M(|un − u|

2)
)1/2

,

which can be made arbitrarily small. Therefore, M(u · eix·ξ) = 0. □
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Now the equation

−div(A(ξ+N)) = 0 in Rd

has two variational formulations as below:

Find Nξ
A
∈WA such that

M
(
ANξ

A
· V

)
= −M(Aξ · V), (4.64)

for all V ∈WA and find Nξ ∈W such that

M
(
ANξ · V

)
= −M(Aξ · V), (4.65)

for all V ∈W.

Lemma 4.11. Let Nξ
A

and Nξ satisfy (4.64) and (4.65) respectively, then it

holds that

Nξ = Nξ
A
.

In particular, Nξ ∈ (B2
A
(Rd))d and hence Mod(Nξ) ⊆Mod(A).

Proof. We will show that Nξ
A

solves the variational formulation (4.65). To see this,

it is enough to use test functions V ∈ S. Further, due to linearity, it is enough

to use test functions of the form V = ∇(eiy·η). Now, observe that if η ∈Mod(A),

then Nξ
A

satisfies (4.65) since it is the same as equation (4.64). On the other hand,

if η <Mod(A), once again Nξ
A

satisfies (4.65), both sides of which are identically

zero, becauseM(f(·)eiy·η) = 0 whenever η is not among the frequencies of f. Hence,

in either case, Nξ
A

satisfies equation (4.65). Finally, due to uniqueness,

Nξ = Nξ
A
.

□

Remark 4.12. By Lemma 4.11, we can conclude that if A is periodic then Nξ is

also periodic. Thus, it is possible to conclude Lemma 4.9 from Lemma 4.11. We

would also like to point out that Lemma 4.11 is a qualitative version of Theorem 5.6

where the almost periodicity of ∇wξ is expressed in terms of almost periodicity

of A. Module containment results pertaining to a variety of differential equations

may be found in [Fin74, AP71].
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4.6.2 Convergence of Homogenized Tensors

It was proved by Bourgeat and Piatnitski [BP04, Theorem 1] that approximate

homogenized tensors defined in (4.19) using periodic correctors defined in (4.20)

converge to the homogenized tensor (4.61) of almost periodic media. They rely

on homogenization theorem for almost periodic operators [JKO94, p. 241] and an

auxilliary result on convergence of “arbitrary solutions” [JKO94, Theorem 5.2]. We

restate this theorem here without proof for which we refer to [BP04].

Theorem 4.13. (Bourgeat & Piatnistski [BP04, Theorem 1]) Let 1 ≤ k, l ≤ d

and let aR,∗
kl

and q∗
kl

be defined as in (4.19) and (4.61) respectively, then

aR,∗
kl

→ q∗
kl

as R→ ∞.

In Subsection 4.4.5, we showed that the sequence of homogenized tensors aR,∗
kl

is bounded and hence converges for a subsequence to a limit a∗
kl
. The theorem of

Bourgeat and Piatnitski shows that, in fact, the whole sequence converges to the

limit q∗
kl
. Therefore, a∗

kl
= q∗

kl
.

Remark 4.14. We can similarly prove that the limit of the fourth-order derivative

of the first Bloch eigenvalue at 0 exists. This derivative is called the dispersive

tensor [ABV16] or Burnett coefficients [COV06], and is useful in establishing

dispersive effective models for long time homogenization of wave propagation in

periodic media [DLS14].

4.7 Higher modes do not contribute

The proof of the qualitative homogenization theorem (Theorem 4.8) only requires

the first Bloch transform. It is not clear whether the higher Bloch modes make any

contribution to the homogenization limit. In this section, we show that they do

not. We know that Bloch decomposition is the isomorphism L2(Rd) � L2(Y
′

; ℓ2(N))

which is reflected in the inverse identity (4.14). For simplicity, take Ω = Rd and

consider the equation Aϵuϵ = f in Rd which is equivalent to

BR,ϵm A
ϵuϵ(ξ) = BR,ϵm f(ξ) ∀m ≥ 1,∀ ξ ∈ ϵ−1Y

′

R,

which may be further expanded to

BR,ϵm A
R,ϵuϵ(ξ) = BR,ϵm f(ξ) +

(
BR,ϵm ∇ · (A

ϵ −AR,ϵ)∇uϵ
)
(ξ) ∀m ≥ 1,∀ ξ ∈ ϵ−1Y

′

R,

or

λR,ϵm (ξ)BR,ϵm u
ϵ(ξ) = BR,ϵm f(ξ) +

(
BR,ϵm ∇ · (A

ϵ −AR,ϵ)∇uϵ
)
(ξ) ∀m ≥ 1,∀ ξ ∈ ϵ−1Y

′

R.

(4.66)
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We claim that one can neglect all the equations corresponding to m ≥ 2.

Proposition 4.15. Let

vR,ϵ(x) =

∫
ϵ−1Y

′

R

∞∑
m=2

BR,ϵm u
ϵ(ξ)ϕR,ϵm (x; ξ)eix·ξ dξ,

then ||vR,ϵ||L2(Rd) ≤ cRϵ. Hence, given any sequence, ϵk → 0, we can find a

sequence Rk such that vRk,ϵk → 0 as k→ ∞.

Proof. Due to boundedness of the sequence (uϵ) in H1(Rd), we have∫
Rd

AR,ϵuϵ uϵ ≤ C. (4.67)

However, by Plancherel Theorem (4.16), we have∫
Rd

AR,ϵuϵ uϵ =

∞∑
m=1

∫
ϵ−1Y

′

R

(
BR,ϵm A

R,ϵuϵ
)
(ξ)BR,ϵm u

ϵ(ξ)dξ ≤ C

Using (4.18), we have

∞∑
m=1

∫
ϵ−1Y

′

R

λR,ϵm (ξ)|BR,ϵm u
ϵ(ξ)|2 dξ ≤ C.

Now, by a simple application of Courant-Fischer min-max principle, we can show

that

λRm(η) ≥ λ
R
2(η) ≥ λ

R
2(−∆, R) ≥

C

R2
> 0 ∀m ≥ 2 ∀η ∈ Y

′

R, (4.68)

where λR
2
(−∆, R) is the second eigenvalue of Laplacian on YR with Neumann bound-

ary condition on ∂YR. The bound quoted is standard for the Neumann Laplacian

on a rectangle but it may also be understood as an instance of the fundamental

gap inequality for Neumann Laplacian on convex domains [PW60]. We also know

that λR,ϵm (ξ) = ϵ−2λR,ϵm , therefore, combining these two facts, we obtain

∞∑
m=2

∫
ϵ−1Y

′

R

|BR,ϵm u
ϵ(ξ)|2 dξ ≤ CR2ϵ2.

Now, given any sequence ϵk → 0, we can choose a sequence Rk → ∞ such that

R2
k
< 1

ϵ
, then along this sequence

∞∑
m=2

∫
ϵ−1Y

′

R

|BR,ϵm u
ϵ(ξ)|2 dξ ≤ Cϵ.

By Parseval’s identity, the left side is equal to ||vR,ϵ||2
L2(Rd)

. This completes the

proof of this Proposition. □
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Remark 4.16. The product ‘‘Rϵ" is the resonance error [Glo11], [GH16] due to

the approximation. The above discussion explains the relation between higher

modes of the Bloch spectrum and the resonance error. In particular, the periodic

approximation serves to separate the lowest Bloch mode from the rest of the

spectrum and the limit R→ ∞ represents the loss of simplicity and hence analyticity

of the lowest Bloch eigenvalue near zero.

4.8 Comments

In [Tar09] , Tartar writes “Although Bloch waves require a periodic medium in

order to be defined, it is clear that physicists use some results from the theory

in situations which are not exactly periodic, because of defects for example.

It should be useful to understand if there is a natural topology for measuring

how far a material is from a periodic medium, so that some results from the

theory of Bloch waves still apply.”

It appears that a perturbative method such as ours can model such a distance

from periodicity, for example, defects, almost periodicity, transmission problems.

The overarching theme of this thesis has been replacement of the original partial

differential operator with approximations that have properties desirable for a Bloch

wave analysis. We hope to apply such methods to a variety of problems.

On the other hand, a non-commutative notion [BT81] of Bloch decomposition

exists in the literature. Although this is couched in the difficult language of C∗

algebras and non-commutative integration theory, the apparatus is exact rather

than an approximation. We would like to explore the relation between our work and

these tools. In particular, the shrinking of the Brillouin zone for the approximations

seems to be related to the notion of tiny spaces in the work of Bellisard. One also

wonders whether these tools have any computational advantages over the existing

method.

In this chapter, we rely on the theorem of Bourgeat and Piatnitski [BP04]

for the convergence of approximate homogenized tensors associated with the

periodizations. We would like to prove this result independently preferably using

methods from spectral theory. However, in homogenization, one often encounters

sequences with multiple limit points. Also, the almost periodic operator is not

necessarily periodic therefore Bloch wave theory is not expected to be enough for

such an analysis.



Chapter 5

Approximation of effective
coefficients of almost periodic

media

In homogenization of almost periodic media, the cell problem is posed on Rd

and the homogenized coefficients are mean values of almost periodic functions.

In practice, the homogenized coefficients are computed using approximate cell

problems posed on cubes of increasing size with different boundary conditions.

In this paper, we prove that approximation of homogenized tensor using cell

problem with Dirichlet boundary conditions converge to the homogenized

tensor of almost periodic media. We also provide an estimate for the rate

of convergence under a suitable decay hypothesis on a modulus of almost

periodicity defined in [ACS14]. The theoretical results are supplemented with

numerical study.

5.1 Introduction

Although we are not able to obtain a rate of convergence for the approximate

homogenized tensors corresponding to periodization, in this chapter, we obtain

a rate of convergence for Dirichlet approximations of homogenized tensors for a

class of almost periodic media. To this end, we use ideas from [BP04], [She15]

and [Glo11]. Bourgeat and Piatnitski [BP04] prove a convergence rate for approxi-

mate homogenized coefficients for stochastic media under strong mixing conditions.

The stochastic process generated by almost periodic media is strictly ergodic and

not mixing [Sim82]. Therefore the result of Bourgeat and Piatnitski does not

apply to them. This necessitates a quantification of almost periodicity. One such

103
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quantification is proposed in [ACS14]. We would also like to point out that an

important assumption for obtaining rate of convergence for periodic approximations

of stochastic media [Fis19] is that coefficients restricted to cubes should follow the

same statistics as the coefficient field on Rd. A similar criterion for almost periodic

media is open.

5.2 Rate of convergence for Dirichlet approxi-

mations

Let a∗
kl

denote the (k, l)th entry of the homogenized tensor for the almost periodic

operator. We shall mostly write this as ek ·A∗el. Similarly, the homogenized tensor

associated to the periodization AR will be denoted by AR,∗. In Section 4.6, we

observed that AR,∗ → A∗. It would have been ideal to obtain rate of convergence

estimates for the error |A∗ − AR,∗|, however we have been unable to do so. In

lieu of this, we provide rate of convergence for Dirichlet approximations to the

homogenized tensor in this section. We also carry out a numerical study with some

benchmark examples. Dirichlet approximations to the homogenized coefficients

are obtained by constructing the approximate correctors with Dirichlet boundary

conditions as opposed to the earlier proposed periodic ones. In what follows, we

shall also discuss the difficulties in proving the rate of convergence for AR,∗ to A∗.

5.2.1 Volume Averaging Method

In engineering, the Volume averaging method [BQW88] is employed to determine

effective behavior of heterogeneous media by using averages of physical quantities,

such as energy, on a large volume of the domain under consideration, called a

Representative Elementary Volume [Whi13]. A comparison between the mathemat-

ical theory of homogenization and volume averaging is carried out in [DBB+13].

In a well-known paper of Bourgeat and Piatnitski [BP04], the volume averaging

technique has been employed to obtain approximations to homogenized tensor for

stochastic media.

The homogenization of stochastic as well as almost periodic media has two

major difficulties - the cell problem is posed on Rd and the loss of differential

structure, i.e., the correctors do not appear as derivatives in the cell problem (4.60)

in almost periodic and stochastic homogenization. The differential structure is

important as it is responsible for the compensated compactness of the oscillating
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test functions in homogenization [CK97]. As a compromise, many authors such as

Kozlov [Koz79], Yurinski [Yur86] have introduced cell problems with a penalization

(or regularization) term to recover the differential structure. However, these

problems are still posed on Rd. The homogenized tensor appears as a mean value

on Rd which makes the computation of homogenized tensor impossible. Hence,

volume averages on large cubes provide a suitable proxy for the homogenized

tensor.

Like stochastic media, almost periodic media exhibits long range order.

Stochastic media is quantified in terms of mixing coefficients. In contrast, the

process generated by almost periodic media is not mixing, although it is er-

godic [Sim82]. In some sense, almost periodic functions fall half way between

periodic and random media. Therefore, a quantification specific to almost pe-

riodicity is required in order to obtain quantitative results in homogenization

theory. A modulus ρ(A) of almost periodicity is defined in [ACS14], which has

been employed by Shen [She15] to extend the compactness methods in [AL87] to

almost periodic homogenization. Shen also proves that the small divisors condition

of Kozlov [Koz78] implies a decay hypothesis on ρ(A). Kozlov was the first to

prove a rate of convergence estimate in homogenization of almost periodic media

satisfying the small divisors condition. Thereafter, quantitative homogenization of

almost periodic operators has seen a resurgence in the works of Armstrong, Shen

and coauthors [ACS14, She15, SZ18, AS16, AGK16]. In particular, they extend

the regularity theory in homogenization using compactness methods, which was

pioneered by Avellaneda and Lin [AL87].

In the next subsection, we shall introduce the Dirichlet approximations, for

which we prove a rate of convergence under a suitable decay hypothesis on the

modulus of almost periodicity of the almost periodic media. Previously, rate of

convergence for approximations to homogenized tensors of almost periodic media

have been considered in [GH16] under the small divisors condition of Kozlov.

The contents of this chapter form a section of the preprint [2].

Remark 5.1. As pointed out in the introduction, to obtain rate of convergence for

approximate homogenized tensors corresponding to periodization of stochastic me-

dia, one requires that AR follows the same probability distribution as A [Fis19]. An

equivalent question for almost periodic media would be whether the periodization

AR has the “same” almost periodicity as A.
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5.2.2 Dirichlet Approximations of Cell Problem

The cell problem for almost periodic media (4.60) is posed in Rd. The following

is its Dirichlet approximation, which is the truncation of (4.60) on a cube YR =

[−Rπ, Rπ)d of side length 2πR. Let H1
0
(YR) denote the space of all L2(YR) functions

whose weak derivatives are also in L2(YR) and whose trace on YR is zero.

Given ξ ∈ Rd, find wR,D,ξ ∈ H1
0
(YR) such that

−∇ ·A(ξ+ ∇wR,D,ξ) = 0. (5.1)

Then Dirichlet approximation AR,D,∗ =
(
aR,D,∗
kl

)
to the homogenized tensor is given

by

aR,D,∗kl =MYR

akl + d∑
j=1

akj
∂wR,D,el

∂yj

 . (5.2)

5.2.3 Convergence Result

The Dirichlet approximations for the homogenized tensor converge to the homoge-

nized tensor of almost periodic operators. This is the content of the next theorem

whose proof is omitted since it may be found in [BP04, Theorem 2].

Theorem 5.2. (Bourgeat & Piatnistski [BP04, Theorem 2]) Let AR,D,∗ be

defined as in (5.2) and let A∗ be defined as in (4.61), then AR,D,∗ → A∗ as

R→ ∞.

5.2.4 Rate of convergence estimates

In this subsection, we will estimate the error |A∗ − AR,D,∗| using the strategy of

Bourgeat and Piatnitski [BP04]. Their techniques were refined and improved by

Gloria and his coauthors [Glo11], [GH16], [GO17]. We shall follow the ideas of

these authors to establish convergence rate for AR,D,∗ in terms of the following

quantification of almost periodicity as introduced in [ACS14]. For a fixed L > 0

and a matrix A with entries in L∞(Rd), define the following modulus of almost

periodicity:

ρ(A, L) B sup
y∈Rd

inf
|z|≤L

||A(·+ y) −A(·+ z)||L∞(Rd). (5.3)

It follows that A is uniformly almost periodic if and only if ρ(A, L) → 0 as L→ ∞.

In particular, for periodic functions, the modulus becomes zero for large L. We are

now ready to state the theorem on the rate of convergence.
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Theorem 5.3. If A ∈ AP(Rd) is such that, for each L > 0, ρ(A, L) satisfies

ρ(A, L) ≲ 1/Lτ for some τ > 0, then, there exists a β ∈ (0, 1) such that

|A∗ −AR,D,∗| ≲
1

Rβ
, (5.4)

where A∗ and AR,D,∗ are defined in (4.61) and (5.2) respectively. □

5.2.5 Strategy of Proof

The proof of Theorem 5.3 will be done in four steps. We have already seen

two cell problems corresponding to the almost periodic media and its Dirichlet

approximation, viz., (4.60) and (5.1). We shall require two more cell problems,

corresponding to regularization of (4.60) and (5.1). For the sake of convenience,

we list all the requisite cell problems below. For ξ ∈ Rd and T > 0:

(D) Find wR,D,ξ ∈ H1
0
(YR) such that

−∇ · (A(ξ+ ∇wR,D,ξ)) = 0. (5.5)

(DT) Find wR,D,ξ
T

∈ H1
0
(YR) such that

−∇ · (A(ξ+ ∇wR,D,ξ
T

)) + T−1wR,D,ξ
T

= 0. (5.6)

(AP) Find Nξ ∈ (B2(Rd))d such that

M
(
ANξ · v

)
= −M(Aξ · v) (5.7)

for all v ∈ {∇ϕ : ϕ ∈ Trig(Rd)}.

(APT) Find wξ
T
∈ H1loc(R

d) such that

−∇ · (A(ξ+ ∇wξ
T
)) + T−1wξ

T
= 0. (5.8)

The homogenized tensor A∗ is defined as

ξ ·A∗ξ =M
(
(ξ+Nξ) ·A(ξ+Nξ)

)
.

Define A∗
T

as

ξ ·A∗Tξ =M
(
(ξ+ ∇wξ

T
) ·A(ξ+ ∇wξ

T
)
)
. (5.9)

Also, define the truncated average AT,R as

ξ ·AT,Rξ =
1

|YR|

∫
YR

(
(ξ+ ∇wξ

T
) ·A(ξ+ ∇wξ

T
)
)
dy,
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and define the Dirichlet approximation AR,D,∗ to A∗ as

ξ ·AR,D,∗ξ =
1

|YR|

∫
YR

(
(ξ+ ∇wR,D,ξ) ·A(ξ+ ∇wR,D,ξ)

)
dy.

The homogenized tensor corresponding to the regularized Dirichlet cell prob-

lem (5.6) is

ξ ·AR,D,∗T ξ =
1

|YR|

∫
YR

(
(ξ+ ∇wR,D,ξ

T
) ·A(ξ+ ∇wR,D,ξ

T
)
)
dy. (5.10)

With the notation in place, we can proceed with the strategy for obtaining the

rate of convergence estimates. This is essentially the same as the one employed by

Bourgeat and Piatnitski [BP04] to obtain estimates for Dirichlet approximations

of homogenized tensor for random ergodic media. We shall write

|A∗ −AR,D,∗| ≤ |A∗ −A∗T |+ |A∗T −AT,R|+ |AT,R −A
R,D,∗
T |+ |AR,D,∗T −AR,D,∗| (5.11)

In the above inequality, the first and last terms on RHS are estimated in

terms of the rate of convergence of regularized correctors to the exact correctors as

T → ∞. The proof of this estimate for the first term is available in Shen [She15].

For the proof of estimate for the last term, we adapt the argument in Bourgeat

and Piatnitski [BP04].

The second term corresponds to rate of convergence in mean ergodic theorems.

This estimate is available for periodic and quasiperiodic functions and is of order

1/R. In Blanc and Le Bris [BLB10] and Gloria [Glo11], a different truncated

approximation is proposed, through the use of filters; either as a weight in the

cell problem or as post-processing. Such approximations have faster rates of

convergence. However, we shall write this rate of convergence in terms of ρ(A, L)

following [SZ18].

The third term on RHS corresponds to a boundary term which is controlled

by the Green’s function decay of the regularized operator T−1 − ∇ · (A∇) in Rd.

The proof is essentially due to Bourgeat and Piatnitski [BP04] for stochastic media

but has lately been refined by Gloria [Glo11] for general media (also see [GO17]).

In the next subsections, we shall prove the four convergence rates.

5.2.6 Rate of convergence of regularized correctors

We will begin by establishing the existence of the regularized correctors as defined

in (5.8). This can be done in two ways. One is by following the derivation

theory of Besicovitch spaces as presented in Casado-Díaz and Gayte [CDG02].
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The other method is to build solutions in H1loc(R
d) directly by approximations on

disks [PY89], [She15]. The second method is more general as it does not require

the assumption of almost periodicity on the coefficients. However, the existence

of a derivation theory on Besicovitch spaces makes it easier to obtain a priori

estimates.

For p ∈ (1,∞), Bp(Rd) is the closure of trigonometric polynomials in the

semi-norm M(| · |p))1/p. Let D∞ be the space

D∞ B {ϕ ∈ C∞(Rd) : Dαϕ ∈ B1(Rd) ∩ L∞(Rd) for all multiindices α }, (5.12)

which is analogous to the space of test functions for defining weak derivatives in

the theory of distributions. Next, given a function u ∈ B1(Rd), define its mean

derivative ∂ju as a linear map on D∞ given by ∂ju(ϕ) B −M
(
u ∂ϕ
∂xj

)
. This definition

is well defined in the sense that if u1 and u2 are two functions in B1(Rd) such that

M(|u1 − u2|) = 0, then they define the same mean derivative. Moreover, if the

distributional derivative of a function u ∈ B1(Rd) is also in B1(Rd), then it agrees

with the mean derivative of u. The following definition of the Besicovitch analogue

of Sobolev spaces is presented in [CDG02]:

B1,p(Rd) B {u ∈ Bp(Rd) : ∃ uj ∈ B
p(Rd) such that ∂ju(ϕ) =M(ujϕ), 1 ≤ j ≤ d }.

(5.13)

This space admits the semi-norm

|u|M =M(|u|) +M(|∇u|).

It can be made into a Banach space by identifying those elements whose difference

has zero semi-norm. We shall continue to denote the associated Banach space

as B1,p(Rd). Further, every representative u is an element of W1,p

loc (R
d) with the

property that any two representatives u1 and u2 satisfy |u1 − u2|M = 0.

Theorem 5.4. Let the matrix A satisfy (D1), (D2), (D3). Then equation (5.8)

has a unique solution wξ
T
∈ B1,2(Rd), and

T−1M(|wξ
T
|2) +M(|∇wξ

T
|2) ≲ 1. (5.14)

Proof. The space B1,2(Rd) is a Hilbert space. Define the bilinear form

a(w, v) BM(A∇w∇v+ T−1wv),

which is elliptic due to coercivity of A. Also, define the linear form

l(v) B −M(Aξ · ∇v)
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for v ∈ B1,2(Rd). The equation (5.8) is said to have a solution in B1,2(Rd) if there

exists wξ
T
∈ B1,2(Rd) such that a(wξ

T
, v) = l(v) for all v ∈ D∞. The existence and

uniqueness of such a solution is guaranteed by an application of Lax-Milgram

lemma. Each representative of wξ
T
∈ B1,2(Rd) is an element of H1loc(R

d). The

estimate (5.14) is obtained from the weak formulation by choosing v = wξ
T

followed

by an application of Young’s inequality. □

The convergence rate for the first term in (5.11) is available in Shen [She15]

in terms of the function ρ(A, ·).

Theorem 5.5 (Shen [She15], Remark 6.7). Let A ∈ AP(Rd) be such that, for

each L > 0, ρ(A, L) satisfies ρ(A, L) ≲ 1/Lτ for some τ > 0. Then, for any ω

such that 0 < ω < 1,

|A∗ −A∗T | ≤ CT
− τ

2(τ+1)
+ω
, (5.15)

where the constant is independent of T but depends on ω and A∗ and A∗
T

are

defined in (4.61) and (5.9) respectively.

5.2.7 Rate of convergence of truncated homogenized ten-

sor

In proving the convergence of truncated averages AT,R to A∗
T
, we need to show that

the almost periodicity of the correctors wξ
T

can be quantified in terms of the almost

periodicity of A. This is the content of the following theorem from Shen [She15].

Theorem 5.6. (Shen [She15], Lemma 5.3) For y, z ∈ Rd, the regularized

corrector wξ
T

satisfies(
−

∫
YR

|∇wξ
T
(t+ y) − ∇wξ

T
(t+ z)|2 dt

)1/2
≤ C||A(·+ y) −A(·+ z)||L∞(Rd), (5.16)

where C is independent of R, y, and z.

Further, Shen and Zhuge [SZ18] have quantified the convergence of truncated

averages in terms of almost periodicity of the integrands in the following theorem.

Theorem 5.7. (Shen & Zhuge [SZ18]) For 1 < p <∞ let u ∈ Bp(Rd) and for

p = ∞ let u ∈ AP(Rd). Then for any 0 < L ≤ R <∞,∣∣∣∣∣∣−
∫
YR

udy−M(u)

∣∣∣∣∣∣ ≲ sup
y∈Rd

inf
|z|≤L

−

∫
YR

|u(t+ y) − u(t+ z)| dt

+

(
L

R

)1/p ′||u||Bp if p <∞
||u||L∞ if p = ∞ (5.17)



5.2 Rate of convergence for Dirichlet approximations 111

As a consequence of the two theorems stated above, we can prove the rate of

convergence estimate |AT,R −A
∗
T
|.

Theorem 5.8. Let ρ(A, L) satisfy ρ(A, L) ≲ 1/Lτ for some τ > 0. Then for any

0 < L ≤ R <∞,

|AT,R −A
∗
T | ≲

1

Lτ
+

(
L

R

)1/2
. (5.18)

Proof. We shall apply Theorem 5.7 to the functions u1 = ek·Ael and u2 = ek·A∇welT .

For u1, we may choose p = ∞ to obtain the following estimate.

|M(A) −MYR(A)| ≲ ρ(A, L) +
L

R
≲
1

Lτ
+
L

R
. (5.19)

For u2, we may choose p = 2. By Theorem 5.7, we have

|M(A∇wel
T
) −MYR(A∇w

el
T
)| ≲ sup

y∈Rd

inf
|z|≤L

−

∫
YR

|(A∇wel
T
)(t+ y) − (A∇wel

T
)(t+ z)| dt

+

(
L

R

)1/2
||u||B2 (5.20)

Through an application of Theorem 5.6, we note that

−

∫
YR

|(A∇wel
T
)(t+ y) − (A∇wel

T
)(t+ z)| dt ≤ C||A(·+ y) −A(·+ z)||L∞(Rd). (5.21)

Combining (5.20) and (5.21), we get

|M(A∇wel
T
) −MYR(A∇w

el
T
)| ≲ sup

y∈Rd

inf
|z|≤L

||A(·+ y) −A(·+ z)||L∞(Rd)

+

(
L

R

)1/2
||u||B2

≲
1

Lτ
+

(
L

R

)1/2
. (5.22)

Combining (5.19) and (5.22), we get (5.18). □

5.2.8 Rate of convergence of boundary term

Now, we shall prove estimate on the boundary term, viz., |AT,R−AR,D,∗T
|. The proof

is essentially the same as in [BP04], although the Green’s function estimates are

borrowed from [GO17]. We begin by recalling the existence of Green’s function

associated with the operator T−1 − ∇ · (A∇) and its pointwise bounds.
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Theorem 5.9. (Gloria & Otto [GO17]) Let A be a coercive matrix with

measurable and bounded entries, and let T > 0. Then for all y ∈ Rd, there is a

function GT(·, y) which is the unique solution in W1,1(Rd) of the equation

T−1GT(x, y) − ∇x · (A∇xGT(x, y)) = δ(x− y), (5.23)

in the sense of distributions. The function GT(·, y) is continuous on Rd \ {y}.

Furthermore, the Green’s function satisfies the following pointwise bounds:

0 ≤ GT(x, y) ≲ exp
(
−c

|x− y|
√
T

)ln
(
2+

√
T

|x−y|

)
if d = 2

|x− y|2−d, if d > 2
. (5.24)

Theorem 5.10. Let 0 < δ < 1, |AT,R−AR,D,∗T
| ≲ R(δ−1)/2+exp

(
−c R

δ
√
T

)Rd d > 2

R3 d = 2.

Proof. Let R ≥ R0 > 0 and δ ≥ δ0 > 0. The proof will be done in three steps:

first to obtain an interior estimate in YR−Rδ, second to obtain an estimate for the

boundary layer YR \ YR−Rδ and the final step to obtain the required convergence

rate.

Step 1. wξ
T

satisfies the following equation in Rd:

−∇ · (A(ξ+ ∇wξ
T
)) + T−1wξ

T
= 0.

wR,D,ξ
T

satisfies the following equation in YR:

−∇ · (A(ξ+ ∇wR,D,ξ
T

)) + T−1wR,D,ξ
T

= 0.

Hence, their difference satisfies

T−1(wξ
T
−wR,D,ξ

T
) − ∇ · (A∇(wξ

T
−wR,D,ξ

T
)) = 0 in YR

in the sense of distributions. Set ϕ1 = χwξ
T
, where χ ∈ C∞(YR;R

+), so that

χ|∂YR = 1, χ|Y
R−Rδ/2

= 0 and |∇χ| ≲ 1/R.

Therefore, by the bounds (5.14), ||ϕ1||2L2(YR) ≲ R
dT and ||∇ϕ1||

2
L2(YR)

≲ Rd for

R ≲ T ≲ R2.

Now, define ϕ2 = wξT −w
R,D,ξ
T

− ϕ1, then ϕ2 satisfies the following equation:

T−1ϕ2 − ∇ ·A∇ϕ2 = −T−1ϕ1 + ∇ ·A∇ϕ1 in YR

ϕ2 = 0 on ∂YR.

Hence, we may write

ϕ2(x) = −

∫
YR

T−1ϕ1(y)GT,R(x, y) +A(y)∇ϕ1(y) · ∇GT,R(x, y) dy, (5.25)



5.2 Rate of convergence for Dirichlet approximations 113

where GT,R is the Green’s function for the operator T−1 − ∇ ·A∇ on YR with zero

Dirichlet boundary conditions, i.e.,

T−1GT,R(x, y) − ∇x · (A∇xGT,R(x, y)) = δ(x− y) in YR

GT,R(x, y) = 0 on ∂YR (5.26)

in the sense of distributions. Therefore,

|ϕ2(x)| ≤ ||ϕ1||L2(YR)

T−1 ∫
YR\YR−Rδ/2

G2T,R(x, y) dy

1/2

+ ||A||L∞ ||∇ϕ1||L2(YR)
∫
YR\YR−Rδ/2

|∇GT,R(x, y)|
2 dy

1/2 .
In the above inequality, the second term will be handled by using Caccioppoli’s

inequality. In particular, let us multiply the equation (5.26) for Green’s function

GT,R by η2GT,R (where η is to be chosen later) and integrate by parts to obtain:

0 = T−1
∫
YR

η2(y)G2T,R(x, y) dy+

∫
YR

A(y)∇(η2(y)GT,R(x, y)) · ∇GT,R(x, y) dy

= T−1
∫
YR

η2(y)G2T,R(x, y) dy+

∫
YR

A(y)∇(η(y)GT,R(x, y)) · ∇(η(y)GT,R(x, y)) dy

−

∫
YR

G2T,R(x, y)A(y)∇η(y) · ∇η(y),

given that η is zero in some neighborhood of 0. From the last equality, we obtain∫
YR

|∇(η GT,R)|
2 dy ≲

∫
YR

G2T,R|∇η|
2 dy.

Choose the function η ∈ C∞(YR,R+), such that
η = 0 in YR−3Rδ/4,

η = 1 in YR \ YR−Rδ/2,

|∇η| ≲ 1/R ,

(5.27)

then the preceding inequality becomes∫
YR\YR−Rδ/2

|∇GT,R|
2 dy ≲

1

R2

∫
YR\YR−3Rδ/4

G2T,R dy.

Therefore, for all x ∈ YR, we have

|ϕ2(x)| ≲ ||ϕ1||L2(YR)

T−1 ∫
YR\YR−Rδ/2

G2T,R(x, y) dy

1/2

+ ||∇ϕ1||L2(YR)

∫
YR\YR−3Rδ/4

R−2G2T,R(x, y) dy

1/2 .
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For x ∈ YR−5Rδ/6, and y ∈ YR \ YR−Rδ/2, we have ||x − y||∞ ≥ ||y||∞ − ||x||∞ ≥
R − Rδ/2 − R + 5Rδ/6 = Rδ/3. Therefore, |x − y| ≳ Rδ Further, note that due to

maximum principle, 0 ≤ GT,R ≤ GT . Hence, on using the pointwise estimate for GT
(Theorem 5.9), the above inequality becomes for d > 2 and for x ∈ YR−5Rδ/6:

|ϕ2(x)| ≲ ||ϕ1||L2(YR)

T−1 ∫
YR\YR−Rδ/2

G2T(x, y) dy

1/2

+ ||∇ϕ1||L2(YR)

∫
YR\YR−3Rδ/4

R−2G2T(x, y) dy

1/2
≲ Rd/2R2δ−dδ exp

(
−c

Rδ
√
T

)
Rd/2 + Rd/2R−1R2δ−dδ exp

(
−c

Rδ
√
T

)
Rd/2

≲ Rd−2δ+dδ exp
(
−c

Rδ
√
T

)
.

in the regime R ≲ T ≲ R2. Similar calculations provide the estimate for d = 2.

Hence, ∫
Y
R−5Rδ/6

|ϕ2(x)|
2 dx

1/2 ≲ Rd+2δ−dδRd/2 exp
(
−c

Rδ
√
T

)
.

Finally, by an application of Caccioppoli’s inequality, we have∫
Y
R−Rδ

|∇ϕ2(x)|
2 dx

1/2 ≲ Rd/2Rd+3δ−dδ exp
(
−c

Rδ
√
T

)
.

Therefore,∫
Y
R−Rδ

|∇(wξ
T
(x) −wR,D,ξ

T
(x))|2 dx

1/2 ≲ Rd/2Rd+3δ−dδ exp
(
−c

Rδ
√
T

)
.

Thus,  1Rd
∫
Y
R−Rδ

|∇(wξ
T
(x) −wR,D,ξ

T
(x))|2 dx

1/2 ≲ Rd+3δ−dδ exp
(
−c

Rδ
√
T

)
. (5.28)

Step 2 Let ξ = el and denote the solutions of equations (5.8) and (5.6) as

wl
T

and wR,D,l
T

. For x ∈ Y1, define the functions

w̃lT(x) =
1

R
wlT(Rx)

w̃R,D,lT (x) =
1

R
wR,lT (Rx).

Then these functions satisfy respectively the following equations in Y1:

−∇ · (A∇w̃lT) + R
2T−1w̃lT = ∇Ael,

−∇ · (A∇w̃R,D,lT ) + R2T−1w̃R,D,lT = ∇Ael.
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Also, ∫
Y1
|∇w̃l

T
(x)|2 dx ≲ 1

Rd

∫
YR
|∇wl

T
(x)|2 dx ≲ C,∫

Y1
|∇w̃R,D,l

T
(x)|2 dx ≲ 1

Rd

∫
YR
|∇wR,D,l

T
(x)|2 dx ≲ C,

 (5.29)

where C is a generic constant. Now, we can obtain the required estimates.

Step 3. On using (5.28) and (5.29), we have

|ek · (AT,R −A
R,D,∗
T )el|

=

∣∣∣∣∣∣−
∫
YR

ek ·A∇(w
l
T −w

R,D,l
T ) dx

∣∣∣∣∣∣
≲

∣∣∣∣∣∣∣ 1Rd
∫
Y
R−Rδ

ek ·A∇(w
l
T −w

R,D,l
T ) dx

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣ 1Rd

∫
YR\YR−Rδ

ek ·A∇w
l
T dx

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣ 1Rd

∫
YR\YR−Rδ

ek ·A∇w
R,D,l
T dx

∣∣∣∣∣∣∣
≲

∣∣∣∣∣∣∣ 1Rd
∫
Y
R−Rδ

ek ·A∇(w
l
T −w

R,D,l
T ) dx

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
∫
Y1\Y1−Rδ−1

ek ·A∇w̃
l
T dx

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
∫
Y1\Y1−Rδ−1

ek ·A∇w̃
R,D,l
T dx

∣∣∣∣∣∣∣
≲

 1Rd
∫
Y
R−Rδ

|∇(wlT −w
R,D,l
T )|2 dx

1/2 + ∫
Y1\Y1−Rδ−1

|∇w̃lT | dx

 + ∫
Y1\Y1−Rδ−1

|∇w̃R,D,lT | dx


≲

 1Rd
∫
Y
R−Rδ

|∇(wlT −w
R,D,l
T )|2 dx

1/2 + ∫
Y1\Y1−Rδ−1

|∇w̃lT |
2 dx

∫
Y1\Y1−Rδ−1

1 dx

1/2

+

∫
Y1\Y1−Rδ−1

|∇w̃R,D,lT |2 dx

∫
Y1\Y1−Rδ−1

1 dx

1/2
≲ Rd−3δ+dδ exp

(
−c

Rδ
√
T

)
+ R(δ−1)/2.

□

5.2.9 Rate of convergence of regularized Dirichlet cor-

rectors

In this subsection, the convergence rate for the last term in (5.11) is established.

Theorem 5.11. Let ρ(A, L) satisfy ρ(A, L) ≲ 1/Lτ for some τ > 0. Then for

any 0 < γ < τ
τ+1

,

|AR,D,∗ −AR,D,∗T | ≤ CγR
4−2γT−2. (5.30)

Proof. Observe that

ξ ·AR,D,∗ξ =
1

|YR|

∫
YR

(ξ+ ∇wR,D,ξ) ·A(ξ+ ∇wR,D,ξ) dy,
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and

ξ ·AR,D,∗T ξ =
1

|YR|

∫
YR

(ξ+ ∇wR,D,ξ
T

) ·A(ξ+ ∇wR,D,ξ
T

) dy,

where wR,D,ξ solves (5.5) and wR,D,ξ
T

solves (5.6). Hence,

ξ·(AR,D,∗T −AR,D,∗)ξ

= −

∫
YR

(ξ+ ∇wR,D,ξ
T

) ·A(ξ+ ∇wR,D,ξ
T

) − (ξ+ ∇wR,D,ξ) ·A(ξ+ ∇wR,D,ξ) dy

= −

∫
YR

(ξ+ ∇wR,D,ξ
T

) ·A∇(wR,D,ξ
T

−wR,D,ξ) + ∇(wR,D,ξ
T

−wR,D,ξ) ·A(ξ+ ∇wR,D,ξ)dy

= −

∫
YR

(ξ+ ∇wR,D,ξ
T

) ·A∇(wR,D,ξ
T

−wR,D,ξ) − ∇(wR,D,ξ
T

−wR,D,ξ) ·A(ξ+ ∇wR,D,ξ)dy

= −

∫
YR

∇(wR,D,ξ
T

−wR,D,ξ) ·A∇(wR,D,ξ
T

−wR,D,ξ) dy.

Define ψR
T
= −T(wR,D,ξ

T
−wR,D,ξ), then the above identity becomes

ξ · (AR,D,∗T −AR,D,∗)ξ = T−2−

∫
YR

∇ψRT ·A∇ψ
R
T dy. (5.31)

We know that ψR
T
∈ H1

0
(YR) solves the equation

T−1ψRT − ∇ · (A∇ψ
R
T ) = w

R,D,ξ in YR.

Therefore, integrating this equation against ψR
T

gives

T−1
∫
YR

|ψRT |
2
dy+

∫
YR

∇ψRT ·A∇ψ
R
T dy =

∫
YR

wR,D,ξψRT dy.

Dropping the first term on LHS yields∫
YR

∇ψRT ·A∇ψ
R
T dy ≤

∫
YR

wR,D,ξψRT dy.

Hence, ∫
YR

∇ψRT ·A∇ψ
R
T dy ≤ ||wR,D,ξ||L2(YR)||ψ

R
T ||L2(YR).

By coercivity of A,

α

∫
YR

|∇ψRT |
2 dy ≤ ||wR,D,ξ||L2(YR)||ψ

R
T ||L2(YR).

On applying Poincaré inequality:

α||∇ψRT ||
2
L2(YR)

≲ R||wR,D,ξ||L2(YR)||∇ψ
R
T ||L2(YR),
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or

||∇ψRT ||L2(YR) ≲ R||w
R,D,ξ||L2(YR).

Substituting the above in (5.31) gives

ξ · (AR,D,∗T −AR,D,∗)ξ ≲ R2T−2−

∫
YR

|wR,D,ξ|2 dy. (5.32)

For x ∈ Y1, define w̃R,D,ξ(x) = 1
R
wR,D,ξ(Rx), then w̃R,D,ξ satisfies the equation:

−∇ · (A(Rx)(ξ+ ∇w̃R,D,ξ(x)) = 0, x ∈ Y1

w̃R,D,ξ(x) = 0 on ∂Y1.

This equation is a particular case of the following homogenization problem:

−∇ ·A
(
x
ϵ

)
(z+ ∇vϵ) = h in Ω̃,

vϵ = 0 on ∂Ω̃,

 (5.33)

where z ∈ L2(Ω̃), h ∈ H−1(Ω̃). By [JKO94, Theorem 5.2], the solutions vϵ converge

weakly to v0 in H1
0
(Ω̃) which satisfies the equation

−∇ ·A∗
(
z+ ∇v0

)
= h, x ∈ Ω̃.

Therefore, w̃R,D,ξ ⇀ w̃D,∞ in H1
0
(Y1), which satisfies the equation

−∇ ·A∗(ξ+ ∇w̃D,∞) = 0, x ∈ Y1.

The zero Dirichlet boundary condition on w̃D,∞ forces w̃D,∞ = 0 a.e. Now, the

analysis of proof of [She15, inequality (1.8)] shows that it remains valid for solutions

of (5.33) in the following form:

||vϵ − v0||L2(Ω̃) ≤ Cγϵ
γ||z+ ∇v0||H1(Ω̃),

for any 0 < γ < τ
τ+1

. Therefore,

||w̃R,D,ξ||L2(Y1) = ||w̃R,D,ξ − w̃D,∞||L2(Y1) ≤ CγR
−γ,

for any 0 < γ < τ
τ+1

. Finally, it follows that

ξ · (AR,D,∗T −AR,D,∗)ξ ≲ R4T−2−

∫
YR

|wR,D,ξ(x)|2 dx

≲ R4T−2
∫
Y1

|w̃R,D,ξ(x)|2 dx

≲ R4−2γT−2. (5.34)

□
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5.2.10 Proof of Theorem 5.3

Proof. Using theorems 5.5, 5.8, 5.10, 5.11 and the inequality (5.11), we obtain

|A∗ −AR,D,∗| ≲
1

T
τ

2(τ+1)
−ω

+
1

Lτ
+

(
L

R

)1/2
+ Rd exp

(
−c

Rδ
√
T

)
+

1

R(1−δ)/2
+ R4−2γT−2.

(5.35)

Let γ ′, β1 ∈ (0, 1). By choosing γ ′ = γ/2, T = R2−γ
′, L = Rβ1, β2 = 2γ ′ and

δ = 1− β2/8, we can obtain the estimate |A∗ −AR,D,∗| ≲ 1
Rβ

, for some β > 0. □

Remark 5.12.

1. The main difficulty for obtaining rate of convergence estimate for the ap-

proximate homogenized tensor AR,∗ corresponding to the periodization AR

is the absence of rate of convergence for almost periodic homogenization of

periodic boundary value problems. Recall that Shen [She15] has obtained

rate of convergence estimates for almost periodic homogenization of Dirichlet

boundary value problems. These are used in the proof of Theorem 5.11.

2. Another way to obtain the convergence estimate for the approximate ho-

mogenized tensor AR,∗ corresponding to the periodization AR would be to

show that ρ(AR, L) ∼ ρ(A, L). Indeed, in approximations of homogenized

tensors for stochastic media, it is typically assumed that the probability

distribution of the coefficients on every cube of side length 2πL coincides

with the probability distribution of the original coefficient field [Fis19].

3. Rate of convergence for periodic homogenization of periodic boundary value

problems can be obtained as suggested in [JKO94, p. 30]. However, the

mismatch of periodic boundary conditions and almost periodic media appears

to be a difficult problem.

4. The above considerations also suggest another question, whether the Dirichlet

and Periodic correctors grow close to each other in the limit of R→ ∞. Math-

ematically, we may ask an estimate for
(
−
∫
YR
|∇wR,D,ξ(y) − ∇wR,ξ(y)|2 dy

)1/2
.

5.3 Numerical study

In this section, we report on the numerical experiments that we carried out for

certain benchmark periodic and quasiperiodic functions introduced in [Glo11,

GH16]. It is known that approximations of homogenized tensor for periodic media
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using Dirichlet and Periodic correctors have a rate of convergence of R−1 [AAP19,

Cor. 1]. Our aim is to verify such results. We also numerically study the difference

of Dirichlet and Periodic correctors as we feel that this difference should also show

decay. These computations are done using the finite element method on FEniCS

software [ABH+15].

5.3.1 Numerical study for Dirichlet Approximations

In this subsection, we investigate the behavior of the error in the Dirichlet approx-

imations |AR,D,∗ −A∗| with respect to side length R.

The first two examples are that of periodic matrices

A1(x) =

(
2+ 1.8 sin(2πx)
2+ 1.8 cos(2πy)

+
2+ sin(2πy)
2+ 1.8 cos(2πx)

)
Id, and

A2(x) = (1+ 30(2+ sin(2πx) sin(2πy))) Id .

The homogenized tensor A∗ is computed numerically by solving the periodic cell

problem on the unit cube [0, 1)d and is found to be approximately 2.757 Id and

59.1 Id for A1 and A2 respectively. The approximate homogenized tensor AR,D,∗ is

computed by solving the Dirichlet cell problem (5.5) for different values of R going

up to 40. The computations are carried out with P2-Finite Elements discretization

and 20 points per dimension in every unit cell. See Figure 5.1 for the log-log plot

of the error |AR,D,∗ −A∗| with respect to R.

The third example is that of the following matrix with quasiperiodic entries:

A3(x) =
(
4+ cos(2π(x+ y)) + cos(2π

√
2(x+ y))

)
Id

The homogenized coefficient for quasiperiodic media A∗ (4.61) is defined as a mean

value in the full space Rd and therefore it is impossible to compute. Hence, for the

computation of the error, A∗ is taken to be the value of AR,D,∗
T

(5.10) for R = T = 60,

since AR,D,∗
T

is known to converge faster to A∗ as R, T → ∞ [Glo11, GH16]. See

Figure 5.2 for the log-log plot of the error |AR,D,∗ −A∗| with respect to R.

5.3.2 Numerical study for approximations of A∗ using pe-

riodic correctors

In this subsection, we investigate the behavior of the error in approximations

to homogenized tensor |AR,∗ − A∗| using periodic correctors with respect to R.
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(a) Periodic function A1 (b) Periodic function A2

Figure 5.1: The error |AR,D,∗ −A∗| for Dirichlet approximations in log-log scale for

the functions A1 and A2 with respect to R.

Figure 5.2: The error |AR,D,∗ −A∗| for Dirichlet approximations in log-log scale for

the function A3 with respect to R.
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The approximate homogenized tensor AR,∗ corresponding to periodization AR has

already been defined in (4.19).

Although we have been unable to establish a rate of convergence in this case,

the log-log plots of errors in periodic and quasiperiodic cases seem to suggest an

asymptotically polynomial rate of convergence. Computations are performed with

P1 finite elements with a varying choice of number of meshpoints n per dimension,

as denoted in Figures 5.3 and 5.4.

5.3.3 Comparison of Dirichlet and Periodic Correctors

An interesting question that arises in Section 5.2 is whether the Dirichlet and

periodic correctors, respectively wR,D,ξ and wR,ξ, grow close to each other as

the side length R of sample cube increases. It is evident that the two approx-

imations satisfy the same differential equation in the interior of the cube and

only differ in the boundary conditions. An attempt to prove an estimate for

E(R) =
(
−
∫
YR
|∇wR,D,e1(y) − ∇wR,e1(y)|2 dy

)1/2
using Green’s function estimate seems

to fail. However, the regularized versions of the problems can be shown to have an

asymptotic rate of convergence of any order due to exponential decay of Green’s

function of the operator −∇ ·A∇+ T−1 with Dirichlet boundary conditions.

In Figure 5.5, we plot the error E(R) with respect to R on a log-log scale for

functions A1 and A2. In Figure 5.6, we plot the error E(R) with respect to R on a

log-log scale for A3. The numerical study is carried out with P1 finite elements.

The number of meshpoints per dimension is taken to be n = 100+ R2.

In Figure 5.7, we plot the error |AR,D,∗ −AR,∗| with respect to R on a log-log

scale for functions A1 and A2. In Figure 5.8, we plot the error |AR,D,∗ −AR,∗| with

respect to R on a log-log scale for A3.

5.4 Comments

The methods that are used in this chapter are physical space methods that are

mostly due to Shen [She15]. We would like to explore some spectral theory methods

for this problem.

We also wonder whether the estimate which is obtained is sharp. A theorem

of [BBMM05] asserts that the rate of convergence in almost periodic homogenization

can be as slow as desired. Since our proof relies on rate of convergence in almost

periodic homogenization, it is doubtful that it can be improved. On the other hand,

it is already well known that for media satisfying Kozlov’s small divisors condition,
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(a) Periodic function A1 (b) Periodic Function A2

Figure 5.3: The error |AR,∗ −A∗| for approximations to homogenized tensor using

periodic correctors in log-log scale for the functions A1 and A2 with respect to R

Figure 5.4: The error |AR,∗ −A∗| for approximations to homogenized tensor using

periodic correctors in log-log scale for the function A3 with respect to R
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(a) Periodic function A1 (b) Periodic function A2

Figure 5.5: The averaged L2 norm of the difference of the gradients E(R) =(
−
∫
YR
|∇wR,D,e1(y) − ∇wR,e1(y)|2 dy

)1/2
in log-log scale for the correctors correspond-

ing to the periodic matrices A1 and A2 plotted as a function of R.

Figure 5.6: The averaged L2 norm of the difference of the gradients E(R) =(
−
∫
YR
|∇wR,D,e1(y) − ∇wR,e1(y)|2 dy

)1/2
in log-log scale for the correctors correspond-

ing to the quasiperiodic matrix A3 plotted as a function of R.
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(a) Periodic function A1 (b) Periodic function A2

Figure 5.7: The absolute error |AR,D,∗−AR,∗| in log-log scale for the periodic matrices

A1 and A2 plotted as a function of R.

Figure 5.8: The absolute error |AR,D,∗ −AR,∗| in log-log scale for the quasiperiodic

matrix A3 plotted as a function of R.
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the rate of convergence is as good as the one for periodic homogenization [GH16].

Hence, the rate of convergence obtained in this thesis is not optimal for quasiperiodic

media satisfying the Kozlov condition.





Chapter 6

Bloch wave homogenization of
quasiperiodic media

Quasiperiodic media is a class of almost periodic media which is gener-

ated from periodic media through a “cut and project" procedure. Bloch

waves are typically defined through a direct integral decomposition of

periodic operators. A suitable direct integral decomposition is not avail-

able for almost periodic operators. To remedy this, we lift an almost

periodic operator to a degenerate periodic operator in higher dimen-

sions. Approximate Bloch waves are obtained for a regularized version

of the degenerate operator. Homogenized coefficients for quasiperiodic

media are obtained from the first Bloch eigenvalue of the regularized

operator in the limit of regularization parameter going to zero. A

notion of quasiperiodic Bloch transform is defined and employed to

obtain homogenization limit for an equation with highly oscillating

quasiperiodic coefficients.

6.1 Introduction

In this chapter, we will perform Bloch wave homogenization of the following

equation with highly oscillatory quasiperiodic coefficients:

−∇ ·A
(
x

ε

)
∇uε(x) = f in Ω

uε = 0 on ∂Ω, (6.1)

where Ω ⊆ Rd is a bounded domain. Bloch wave homogenization is a framework

developed by Conca and Vanninathan [CV97] for obtaining qualitative as well as

quantitative results in periodic homogenization. Further, Bloch decomposition has

127
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been employed by Birman and Suslina [BS04] to obtain order-sharp estimates for

systems in the theory of homogenization with minimal regularity requirements. Let

M be an integer such that M > d and let Q = [0, 2π)M denote a parametrization of

theM-dimensional torus TM. We make the following assumptions on the coefficient

matrix A = (akl)
d
k,l=1:

(H1) The entries (akl)
d
k,l=1 are smooth, bounded real-valued functions defined on

Rd.

(H2) The coefficient matrix A is quasiperiodic, i.e., there exists a d × d matrix B

with smooth Q-periodic entries and a constant M × d matrix Λ such that

A = B ◦Λ, i.e.,

∀ x ∈ Rd and ∀k, l s.t. 1 ≤ k, l ≤ d akl(x) = bkl(Λx),

where the matrix Λ satisfies

ΛTp , 0 for non-zero p ∈ ZM. (6.2)

(H3) The matrix A is symmetric.

(H4) The matrix A is coercive, i.e., there is a positive real number α such that for

all v ∈ Rd and a.e. x ∈ Rd, we have

⟨A(x)v, v⟩ ≥ α|v|2.

Remark 6.1.

1. The assumption of smoothness on the entries of A is not essential. The ap-

proach of this chapter demands taking trace of solutions on lower dimensional

manifolds. We only require as much smoothness as would guarantee twice

continuous differentiability of the solutions.

2. The assumption (6.2) implies that the continuous and periodic matrix B is

uniquely determined from its values on ΛRd. Hence, coercivity of B on RM

follows from that of A. See [BCPD92, Section 3] for proof.

The class of quasiperiodic functions is a subclass of almost periodic functions.

For K = R or C, let Trig(Rd;K) denote the set of all K-valued trigonometric poly-

nomials. Recall that the completion of Trig(Rd;K) in norm of uniform convergence
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results in a Banach space called the space of all Bohr almost periodic functions

denoted as AP(Rd). Further, in Lploc(R
d), one can define a seminorm

||f||Bp B

lim sup
R→∞

1

Rd

∫
[−R

2 ,
R
2 )

d
|f(y)|p dy

1/p .
For 1 ≤ p < ∞, the completion of Trig(Rd;K) in this seminorm results in the

Besicovitch space of almost periodic functions Bp(Rd). Given a Besicovitch almost

periodic function g, one can define the notion of mean value

M(g) B lim
R→∞

1

Rd

∫
[−R

2 ,
R
2 )

d
g(y)dy.

For each g ∈ Bp(Rd), we can associate a formal Fourier series g ∼
∑
ξ∈Rd

ĝ(ξ)eix·ξ,

whose exponents are those vectors ξ ∈ Rd such that M(g · exp(ix · ξ)) , 0. These

exponents or frequencies are denoted by exp(g) and the Z-module generated

by exp(g) is called as the frequency module of g and denoted by Mod(g). A

quasiperiodic function may also be defined as an almost periodic function whose

frequency module is finitely generated (See 2 in Remark 6.2). Trigonometric

polynomials are the most common example of quasiperiodic functions. One

may conclude from this definition that any quasiperiodic function may be lifted

through a winding matrix Λ to a periodic function on a higher dimensional torus.

The space of all periodic L2 functions in the higher dimension will be denoted

interchangeably by L2♯(Q) or L2(TM). The space L2♯(Q) is also defined as the

closure of C∞
♯ (Q) functions in L2(Q) norm. Similarly, for s ∈ R, we may define

Hs♯(Q) or Hs(TM) as the space of all periodic distributions for which the norm

||u||Hs =
(∑

n∈ZM(1+ |n|2)s|û(n)|2
)1/2

is finite.

Remark 6.2.

1. The assumption (6.2) makes sure that the mean value of the quasiperiodic

matrix A can be written as the mean value of the periodic matrix B on Q.

A proof of this fact may be found in [Shu78]. The equality of the two mean

values is used in Section 6.6 for the characterization of homogenized tensor

of quasiperiodic media.

2. We have given two seemingly disparate definitions of quasiperiodic functions,

one as restriction of periodic functions to lower dimensional planes and second

through the frequency module. Indeed, the two definitions are equivalent

and the proof may be found in [BP01] for different classes of almost periodic
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functions. Let Γ ⊆ Rd be a finitely generated Z-module. Denote by B2
Γ
(Rd)

(respectively APΓ(Rd)) the subspace of B2(Rd) (respectively AP(Rd)) con-

taining functions whose frequencies belong to Γ . Then, B2
Γ
(Rd) (respectively

APΓ(R
d)) is isometrically isomorphic to L2(TN) (respectively C(TN)) for some

N > d.

3. A simple example of a quasiperiodic function is g(x) = sin(x) + sin(
√
2x)

which admits a periodic embedding of the form g̃(x, y) = sin(x)+ sin(y) with

Λ = (1
√
2)T . One may wonder how to obtain a common matrix Λ for a

collection of functions such as in the case of the entries of a quasiperiodic

matrix. This is not too difficult either, as illustrated in the following example.

Consider the quasiperiodic matrix

A =

sin(x) + sin(
√
2x) cos(

√
2x)

cos(
√
2x) cos(

√
3x)

 , x ∈ R.
The matrix A admits the following periodic embedding.

B =

sin(x) + sin(y) cos(y)

cos(y) cos(z)

 , (x, y, z) ∈ R3,
with Λ = (1

√
2
√
3)T .

4. The assumption (6.2) is a qualitative version of Kozlov’s small divisors

condition which we recall below.

Definition 6.3. A quasiperiodic function f : Rd → R is said to satisfy the

Kozlov condition if

(1) there exist a function F : RM → R and M(= m1+m2+ . . .+md) numbers

β1
1
, β2

1
, . . . , βm1

1
, β1

2
, . . . , βm2

2
, . . . , β1

d
, . . . , βmd

d
∈ R such that

f(x) = F
(
β11x1, β

2
1x1, . . . , β

m1

1
x1, β

1
2x2, . . . , β

m2

2
x2, . . . , β

1
dxd, . . . , β

md

d
xd

)
.

(2) For each 1 ≤ i ≤ d, βi B (β1
i
, β2

i
, . . . , βmi

i
) is linearly independent over Z.

(3) There exist C > 0 and τ > 0 such that for each i = 1, 2, . . . , d such that

mi ≥ 2,

|n · βi| ≥
C

|n|τ
, for all n ∈ Zmi \ {0}. (6.3)

A standard method to solve equations with quasiperiodic coefficients is to

propose and solve an equation in higher dimensions whose solutions when suitably
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restricted to Rd solve the original equation [Koz78, GH16, BLBL15, WGC18]. Such

a procedure necessitates an assumption on coefficients to be at least continuous since

restriction of functions to lower dimensional surfaces requires some smoothness.

A second difficulty results from the fact that the equation posed in the higher

dimension is typically degenerate or non-elliptic. In order to define a suitable

notion of Bloch waves, we regularize the degenerate equation in higher dimension.

The homogenized tensor for quasiperiodic media is found to be equal to the limit of

the Hessian of first Bloch eigenvalue of the regularized degenerate operator as the

regularization parameter tends to zero. Further, we define a notion of quasiperiodic

Bloch transform to aid us in the passage to the homogenization limit.

We note here that the study of almost periodic homogenization was initiated

by Kozlov [Koz78] who also obtained a rate of convergence for quasiperiodic

media satisfying a small divisors condition called the Kozlov condition. A widely

known example of quasiperiodic media is quasicrystals [SBGC84]. Quasicrystals

are ordered structures without periodicity. They may be thought of as periodic

crystals in higher dimensions that are projected to lower dimensions through a

“cut and project” procedure. Quasicrystals have unique thermal and electrical

conductivity properties with many potential industrial and household applications,

such as adhesion and friction resistant agents, composite materials [Dub12]. The

mathematical structure of quasicrystals had already been anticipated in the works

of Bohr [Boh47], Besicovitch [Bes55], and Meyer [Mey95].

The plan of the chapter is as follows: In Section 6.2, we introduce the

degenerate periodic equation in RM and its regularized version for which we obtain

approximate Bloch waves. In Section 6.3, we prove the existence of the regularized

Bloch waves. In Section 6.4, we apply Kato-Rellich theorem to obtain analytic

branch of the regularized Bloch waves and Bloch eigenvalue. In Section 6.5, we

recall the cell problem for almost periodic media and the cell problem for the

degenerate periodic operator in higher dimensions. In Section 6.6, we obtain the

homogenized tensor for the quasiperiodic media as a limit of the first regularized

Bloch eigenvalue. In Section 6.7, we introduce a notion of quasiperiodic Bloch

transform. Finally, in Section 6.8, we obtain the homogenization theorem for

quasiperiodic media by using the quasiperiodic Bloch transform.

The contents of this chapter form a section of the preprint [3].
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6.2 Degenerate operator in RM

The Bloch wave method in homogenization is a spectral method. Bloch waves

are solutions to the Bloch spectral problem which is a parametrized eigenvalue

problem. While the details of Bloch wave method can be found in [CV97], the

main feature of this method is the existence of a “ground state” for the periodic

operator, which is facilitated by the direct integral decomposition of the periodic

operator. In the case of a quasiperiodic operator, one may not have a ground state

but we show the existence of an approximate ground state. To begin with, we shall

pose a Bloch spectral problem for the quasiperiodic operator. Let Y
′

B

[
−
1

2
,
1

2

)d
,

then we seek quasiperiodic solutions to the following Bloch spectral problem for

the quasiperiodic operator A = −∇ · (A∇)

−(∇+ iη) ·A(∇+ iη)ϕ = λϕ in Rd. (6.4)

The problem above is typically solved for periodic A, in which case, the

solutions are called Bloch waves. However, the matrix A is quasiperiodic, and it is

not clear whether quasiperiodic solutions to (6.4) exist. Therefore, we propose to

lift the operator A to a periodic operator in RM, for which a functional analytic

formalism is available. The mapping x 7→ Λx ∈ RM lifts the operator A to the

periodic but degenerate operator in RM given by

C B −ΛT∇y · BΛ
T∇y. (6.5)

Let us denote ΛT∇y by D, then operator C is written as −D · BD. The operator

C may also be written as −∇y · C∇y where the matrix C = ΛBΛT . Note that C is

non-coercive.

The Bloch eigenvalue problem given by (6.4) is lifted to the following problem:

For η ∈ Y ′ , find ϕ(η) ∈ H1♯(Q) such that

C(η)ϕ(η) B −(D+ iη) · B(D+ iη)ϕ(η) = λ(η)ϕ(η). (6.6)

We note here that due to the degeneracy of operator C(η), we cannot seek Lax-

Milgram solutions to this equation in H1♯(Q). To remedy this situation, inspired

by [BLBL15], we regularize (6.6) as follows. For η ∈ Y ′ and 0 < δ < 1, find

ϕδ(η) ∈ H1♯(Q) such that

Cδ(η)ϕδ(η) B −(D+ iη) · B(D+ iη)ϕδ(η) + δ∆ϕδ(η) = λδ(η)ϕδ(η). (6.7)

The solutions ϕδ to (6.7) shall be called regularized Bloch waves and λδ will

be called regularized Bloch eigenvalues.
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Remark 6.4.

1. In homogenization, one often assumes the basic periodicity cell to be rectan-

gular for convenience. However, more general periodicity cells in the shape of

a parallelopiped may be considered through a change of coordinates. Under

the change of coordinates, the rectangular cell becomes a parallelopiped and

an operator of the form −∇ ·A∇ becomes −∇ · (PAP−1)∇. In a similar fashion,

the transformation Λ converts the operator −∇x · A∇x into the operator

−∇y · (ΛBΛ
T)∇y. Unlike PAP−1, the matrix ΛBΛT is non-invertible since Λ

is a transformation between spaces of different dimensions.

2. It is instructive to compare quasiperiodic structures with laminates. Quasiperi-

odic media admit embeddings in higher-dimensions which are periodic and

non-homogeneous in all directions. On the other hand, laminated materials

are periodic structures which are homogeneous in some directions. Further,

the operator with quasiperiodic coefficients has a degenerate embedding in

higher dimensions, viz., it is non-elliptic in certain directions. On the other

hand, the operator modelling laminates are elliptic in all directions.

3. The regularization may be thought of as the addition of complementary

directions to the quasicrystal which is produced by “cutting” a periodic crystal

in certain “irrational” directions and then projecting to lower dimensions.

4. In contrast with (6.7), it is standard to take the quasimomentum parameter

η in RM and to seek the regularized Bloch eigenvalues corresponding to the

periodic operator given by −∇y · (ΛBΛ
T +δI)∇y where I is the M×M identity

matrix. However, we have chosen the quasimomentum parameter η in Rd and

we have not introduced a shift in the regularized term δ∆. This simplifies

the presentation considerably.

5. A notion of approximate Bloch waves for aperiodic media has been in-

troduced in a dynamic context in the works of Gloria and his collabora-

tors [BG19, DGS18]. They employ a concept of Taylor-Bloch waves for

long-time homogenization of aperiodic wave equation. While our method

relies on spectral theory, they make use of regularized cell problems to define

Taylor-Bloch waves.
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6.3 Regularized Bloch waves

In what follows, we shall prove that

1. There exists C∗ such that for all η ∈ Y
′

, the bilinear form generated by the

operator Cδ(η)+C∗I is elliptic on H1♯(Q) where I denotes the identity operator

on L2♯(Q). This will allow us to prove invertibility of Cδ(η) + C∗I.

2. By Rellich compactness theorem, we will prove compactness of the inverse

of Cδ(η) + C∗I in L2♯(Q). This will prove the existence of regularized Bloch

eigenvalues and Bloch eigenfunctions.

3. An application of the perturbation theory will provide us with smoothness of

regularized Bloch eigenvalues and Bloch waves with respect to η near η = 0.

For the bilinear form aδ[η](·, ·) defined on H1♯(Q) ×H1♯(Q) by

aδ[η](u, v) B

∫
Q

B(D+ iη)u · (D+ iη)v dy+ δ

∫
Q

∇yu · ∇yv dy, (6.8)

we have the following Gårding-type inequality whose proof is simple and is omitted.

Lemma 6.5. There exist positive real numbers C∗ and C∗ not depending on δ

and η such that for all u ∈ H1♯(Q) and all η ∈ Y ′, we have

a[η](u, u) + C∗||u||
2

L2
♯
(Q)
≥ δ||∇yu||

2

L2
♯
(Q)

+ C∗||Du||L2
♯
(Q). (6.9)

The above lemma shows that for every η ∈ Y ′ the operator Cδ(η) + C∗I is

elliptic on H1♯(Q). Hence, for f ∈ L2♯(Q), this shows that Cδ(η)u + C∗u = f is

solvable and the solution is in H1♯(Q). As a result, the solution operator S(η) is

continuous from L2♯(Q) to H1♯(Q). Since the space H1♯(Q) is compactly embedded

in L2♯(Q), S(η) is a self-adjoint compact operator on L2♯(Q). Therefore, by an

application of the spectral theorem for self-adjoint compact operators, for every

η ∈ Y
′ we obtain an increasing sequence of eigenvalues of Cδ(η) + C∗I and the

corresponding eigenfunctions form an orthonormal basis of L2♯(Q). However, note

that both the operators Cδ(η) and Cδ(η) + C∗I have the same eigenfunctions but

each eigenvalue of the two operators differ by C∗. We shall denote the eigenvalues

and eigenfunctions of the operator Cδ(η) by η→ (λδm(η), ϕ
δ
m(·, η)). Note that due

to the regularity of the coefficients, the eigenfunctions are C∞ functions of y ∈ Q.

All of these developments are recorded in the theorem below.

Theorem 6.6. The regularized Bloch eigenvalue problem (6.7) admits a count-

able sequence of eigenvalues and corresponding eigenfunctions in the space

H1♯(Q). Further, the eigenfunctions ϕm(y, η) are C∞ functions of y ∈ Q.
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Proof. We have already proved the existence of the eigenvalues and eigenfunctions

for the problem (6.7). Regularity of the eigenfunctions follows from the standard

elliptic regularity theory [LU68]. □

Remark 6.7. In (H1), we assume the coefficient matrix A to be smooth. However,

we do not require this much regularity. We only require as much smoothness on

the coefficient matrix that would ensure that the Bloch eigenfunctions are twice

continuously differentiable.

6.4 Regularity of the ground state

In the sequel, differentiability properties of regularized Bloch eigenvalues and

regularized Bloch eigenfunctions with respect to the dual parameter η ∈ Y ′ are

required. For this purpose, we have Kato-Rellich theorem [Kat95] which guarantees

analyticity of parametrized eigenvalues and eigenfunctions corresponding to analytic

family of operators near a point at which the eigenvalue is simple. Indeed, we will

prove the following theorem.

Theorem 6.8. For every δ > 0, there exists θδ > 0 and a ball Uδ B Bθδ(0) B

{η ∈ Y
′

: |η| < θδ} such that

1. The first regularized Bloch eigenvalue η→ λδ
1
(η) is analytic for η ∈ Uδ.

2. There is a choice of corresponding eigenfunctions ϕδ
1
(·, η) such that

η ∈ Uδ → ϕδ
1
(·, η) ∈ H1♯(Q) is analytic.

The proof will require the Kato-Rellich theorem which we will state below for

completeness. The theorem as stated in [RS78] is for a single parameter, however

the theorem is also true for multiple parameters with the assumption of simplicity

(See Supplement of [Bau85]).

Theorem 6.9. (Kato-Rellich) Let D(η̃) be a self-adjoint holomorphic family

of type (B) defined for η̃ in an open set in CM. Further let λ0 = 0 be an

isolated eigenvalue of D(0) that is algebraically simple. Then there exists a

neighborhood R0 ⊆ CM containing 0 such that for η̃ ∈ R0, the following holds:

1. There is exactly one point λ(η̃) of σ(D(η̃)) near λ0 = 0. Also, λ(η̃) is

isolated and algebraically simple. Moreover, λ(η̃) is an analytic function

of η̃.
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2. There is an associated eigenfunction ϕ(η̃) depending analytically on η̃

with values in H1♯(Q).

In order to prove Theorem 6.8, we need to complexify the shifted operator

Cδ(η) before verifying the hypothesis of Kato-Rellich Theorem.

Proof. (Proof of Theorem 6.8)

(i) Complexification of Cδ(η) The form a[η](·, ·) is associated with the operator

Cδ(η). We define its complexification as

t(η̃) =

∫
Q

B(D+ iσ+ τ)u · (D− iσ+ τ)udy+ δ

∫
Q

∇yu · ∇yudy

for η̃ ∈ R where

R B {η̃ ∈ CM : η̃ = σ+ iτ, σ, τ ∈ RM, |σ| < 1/2, |τ| < 1/2}.

(ii) the form t(η̃) is sectorial We have

t(η̃) =

∫
Q

B(D+ iσ+ τ)u · (D− iσ+ τ)udy+ δ

∫
Q

∇yu · ∇yudy

=

∫
Q

B(D+ iσ)u · (D− iσ)udy+ δ

∫
Q

∇yu · ∇yudy−

∫
Q

B(τu) ·Dudy

+

∫
Q

BDu · (τu)dy−

∫
Q

Bτu · τudy+ i

∫
Q

Bσu · τudy+ i

∫
Q

Bτu · σudy.

From above, it is easy to write separately the real and imaginary parts of the form

t(η̃).

ℜt(η̃)[u] =

∫
Q

B(D+ iσ)u · (D− iσ)udy+ δ

∫
Q

∇yu · ∇yudy−

∫
Q

Bτu · τudy,

(6.10)

ℑ t(η̃)[u] =

∫
Q

Bσu · τudy+

∫
Q

Bτu · σudy+ ℑ

∫
Q

BDu · τudy. (6.11)

For the real part, we can readily obtain the following estimate:

ℜt(η̃)[u] + C5||u||
2

L2
♯
(Q)
≥
α

2

(
||u||2

L2
♯
(Q)

+ ||Du||2
L2
♯
(Q)

)
+ δ||∇yu||

2

L2
♯
(Q)
. (6.12)

Let us define the new form t̃(η̃) by t̃(η̃)[u, v] = t(η̃)[u, v] + (C5 +C6)(u, v)L2
♯
(Q), for

which it holds that

ℜt̃(η̃)[u] ≥
α

2

(
||u||2

L2
♯
(Q)

+ ||Du||2
L2
♯
(Q)

)
+ δ||∇yu||

2

L2
♯
(Q)

+ C6||u||
2

L2
♯
(Q)
.
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Also, the imaginary part of t̃(η̃) can be estimated as follows:

ℑt̃(η̃)[u] ≤ C7||u||
2

L2
♯
(Q)

+ C8||Du||
2

L2
♯
(Q)

C7=C6C9,2C8=αC9= C9

(
C6||u||

2

L2
♯
(Q)

+
α

2
||Du||2

L2
♯
(Q)

)
≤ C9

(
ℜt̃(η̃)[u] −

α

2
||u||2

L2
♯
(Q)

)
.

This shows that t̃(η̃) is sectorial. However, sectoriality is invariant under transla-

tions by scalar multiple of identity operator in L2♯(Q), therefore the form t(η̃) is

also sectorial.

(iii) The form t(η̃) is closed Suppose that un
t→ u. This means that un → u

in L2♯(Q) and t(η̃)[un−um] → 0. As a consequence, ℜt(η̃)[un−um] → 0. By (6.12),

||un−um||H1
♯
(Q) → 0, i.e., (un) is Cauchy in H1♯(Q). Therefore, there exists v ∈ H1♯(Q)

such that un → v in H1♯(Q). Due to uniqueness of limit in L2♯(Q), v = u. Therefore,

the form is closed.

(iv) The form t(η̃) is holomorphic The holomorphy of t is an easy consequence

of the fact that t is a quadratic polynomial in η.

(v) 0 is an isolated eigenvalue Zero is an eigenvalue because constants

belong to the kernel of Cδ(0) = −∇y · (ΛBΛ
T + δI)∇y. We proved using Lemma 6.5

that Cδ(0) + C∗I has compact resolvent. Also, C∗ is an eigenvalue of Cδ(0) + C∗I.

Therefore, C−1
∗ is an eigenvalue of (Cδ(0) + C∗I)−1 and C−1

∗ is isolated. Hence, zero

is an isolated point of the spectrum of Cδ(0).

(vi) 0 is a geometrically simple eigenvalue Denote by kerCδ(0) the

nullspace of operator Cδ(0). Let v ∈ kerCδ(0), then
∫
Q
(ΛBΛT +δI)∇yv ·∇yv dy = 0.

Due to the coercivity of the matrix (ΛBΛT + δI), we obtain ||∇yv||L2
♯
(Q) = 0. Hence,

v is a constant. This shows that the eigenspace corresponding to eigenvalue 0 is

spanned by constants, therefore, it is one-dimensional.

(vii) 0 is an algebraically simple eigenvalue Suppose that v ∈ H1♯(Q) such

that Cδ(0)2v = 0, i.e., Cδ(0)v ∈ kerCδ(0). This implies that Cδ(0)v = C for some

generic constant C. However, by the compatibility condition for the solvability

of this equation, we obtain C = 0. Therefore, v ∈ kerCδ(0). This shows that the

eigenvalue 0 is algebraically simple. □
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6.5 Cell problem for quasiperiodic media

In this section, we shall recall the cell problem [OZ82] in the theory of almost

periodic homogenization as well as the cell problem for the degenerate periodic

operator in higher dimensions [Koz78] for quasiperiodic media.

Let el be the unit vector in Rd with 1 in the lth place and 0 elsewhere. For

almost periodic media, the cell problem

−∇x · (A(x)(el + ∇xwl)) = 0 (6.13)

is not solvable in the space of almost periodic functions. Hence, an abstract setup

is required which is explained below. Let S = {∇xϕ : ϕ ∈ Trig(Rd;R)}. This is a

subspace of (B2(Rd))d. We shall call the closure of S in (B2(Rd))d as W. For the

matrix A, we define a bilinear form on W by

a(w1, w2) =

d∑
j,k=1

M(ajkw
1
jw

2
k),

where w1 = (w1
1
, w1

2
, . . . , w1

d
) and w2 = (w2

1
, w2

2
, . . . , w2

d
). By coercivity of the

matrix A, the bilinear form is coercive. Also, by boundedness of A, the bilinear

form is continuous on W ×W. We also define the following linear form on W:

Ll(V) B −

d∑
k=1

M(akl)vk.

Again, by boundedness of matrix A, the linear form Ll is continuous. Hence,

Lax-Milgram lemma guarantees a solution to the following problem: Find Nl ∈W

such that ∀V ∈W, we have

a(Nl, V) = Ll(V). (6.14)

This is the abstract cell problem for almost periodic homogenization [OZ82] and

the homogenized coefficients are defined as

q∗kl =M

akl + d∑
j=1

akjN
l
j

 . (6.15)

However, in the case of quasiperiodic media, one can also define cell problem in

higher dimensions as in [Koz78]. The transformation x 7→ Λx converts the cell

problem in Rd (6.13) to a cell problem posed in Q for the degenerate periodic

operator.

−D · B(y)Dψl = D · B(y)el. (6.16)
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Due to the lack of coercivity, we implement the regularizing trick as in [BLBL15].

For 0 < δ < 1, we seek the solution ψδ
l
∈ H1♯(Q)/R to the following equation.

−D · B(y)Dψδl − δ∆ψ
δ
l = D · B(y)el. (6.17)

The solution satisfies the a priori bound ||Dψδ
l
||2
L2
♯
(Q)

+ δ||∇yψ
δ
l
||2
L2
♯
(Q)
≤ C for some

generic constant C. As a consequence, Dψδ
l

converges to some function χl ∈

(L2♯(Q))d for a subsequence in the limit δ → 0. Using the a priori bounds, we

can pass to the limit δ → 0 in the equation (6.17) to show that χl solves the

equation (6.16) in the form

−D · B(y)χl = D · B(y)el. (6.18)

By elliptic regularity, Dψδ
l
∈ Hs♯(Q) for all s > 0. As a consequence, Dψδ

l
∈ C∞(Q).

Therefore, χl ∈ Hs♯(Q) for all s > 0. Again, χl ∈ C∞(Q) and the equation (6.18)

holds pointwise. Hence, we can restrict equation (6.18) to Rd using the matrix Λ.

Define Nl(x) = χl(Λx), then Nl solves the abstract cell problem (6.14). Therefore,

the homogenized coefficients can be written in terms of the solution of the lifted

cell problem (6.16).

q∗kl =M

akl + d∑
j=1

akjN
l
j

 =MQ

bkl + d∑
j=1

bkjχ
l
j

 . (6.19)

Let us define the approximate homogenized tensor Aδ,∗ = (qδ,∗
kl
) as

qδ,∗kl = ek ·A
δ,∗el =MQ

(
bkl + ek · BDψ

δ
l

)
, (6.20)

and the homogenized tensor A∗ = (q∗
kl
) of quasiperiodic media as

q∗kl = ek ·A
∗el =MQ

(
bkl + ek · Bχ

l
)
. (6.21)

then the following lemma holds true.

Lemma 6.10. The approximate homogenized matrix qδ,∗
kl

converges to the

homogenized matrix q∗
kl

of quasiperiodic media as defined in (6.21).

Proof. The proof follows easily from the bounds that are available for ψδ
l
. □

Remark 6.11. Another method of solving the cell problem is proposed in [WGC19]

where instead of seeking solutions in the degenerate Sobolev space as in [GH16],

one seeks solutions in a subspace of H1♯(Q) where all the derivatives in directions

orthogonal to the irrational plane are set to zero.
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6.6 Characterization of homogenized tensor

Now, we shall compute derivatives with respect to η of the first regularized Bloch

eigenvalue and first regularized Bloch eigenfunction at the point η = 0 and identify

the homogenized tensor for quasiperiodic media. Note that the regularized Bloch

eigenvalues and eigenfunctions are defined as functions of η ∈ Y ′. The first

regularized Bloch eigenfunction satisfies the following problem in Q:

−(D+ iη) · B(y)(D+ iη)ϕδ1(y;η) − δ∆ϕ
δ
1(y;η) = λ

δ
1(η)ϕ

δ
1(y;η). (6.22)

We know that λδ
1
(0) = 0. For η ∈ Y ′ , recall that Cδ(η) = −(D+iη)·B(y)(D+iη)−δ∆.

In the rest of this section, we will suppress the dependence on y for convenience.

For l = 1, 2, . . . , d, differentiate equation (6.22) with respect to ηl to obtain

∂Cδ

∂ηl
(η)ϕδ1(η) + C

δ(η)
∂ϕδ

1

∂ηl
(η) = λδ1(η)

∂ϕδ
1

∂ηl
(η) +

∂λδ
1

∂ηl
(η)ϕδ1(η), (6.23)

where
∂C

∂ηl
(η) = −iD · (Bel)− iel · (BD)+el ·Bη+η ·Bel, where el is the unit vector

in Rd with 1 in the lth place and 0 elsewhere. We multiply (6.23) by ϕδ
1
(η), take

mean value over Q and set η = 0 to get
∂λδ

1

∂ηl
(0) = 0 for all l = 1, 2, . . . , d.

On the other hand, if we set η = 0 in (6.23), we obtain

Cδ(0)
∂ϕδ

1

∂ηl
(0) = −

∂Cδ

∂ηl
(0)ϕδ1(0),

or

(−D · B(y)D− δ∆)
∂ϕδ

1

∂ηl
(0) = D · B(y)eliϕ

δ
1(0).

Hence, ψδl −
1

iϕδ1(0)

∂ϕδ
1

∂ηl
(0) is a constant.

Now, differentiate (6.23) with respect to ηk to obtain(
∂2Cδ

∂ηk∂ηl
(η) −

∂2λδ
1

∂ηk∂ηl
(η)

)
ϕδ1(η) +

(
∂Cδ

∂ηk
(η) −

∂λδ
1

∂ηk
(η)

)
∂ϕδ

1

∂ηl
(η)+(

∂Cδ

∂ηl
(η) −

∂λδ
1

∂ηl
(η)

)
∂ϕδ

1

∂ηk
(η) +

(
Cδ(η) − λδ1(η)

) ∂2ϕδ
1

∂ηl∂ηk
(η) = 0. (6.24)

Multiply with ϕδ
1
(η), take mean value over Q and set η = 0 to obtain

1

2

∂2λδ
1

∂ηk∂ηl
(0) =MQ

(
bkl +

1

2
ek · BDψ

δ
l +

1

2
el · BDψ

δ
k

)
. (6.25)

Thus, we have proved the following theorem:
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Theorem 6.12. The regularized first Bloch eigenvalue and eigenfunction sat-

isfy:

1. λδ
1
(0) = 0.

2. The eigenvalue λδ
1
(η) has a critical point at η = 0, i.e.,

∂λδ
1

∂ηl
(0) = 0,∀l = 1, 2, . . . , d. (6.26)

3. For l = 1, 2, . . . , d, the derivative of the eigenvector (∂ϕδ
1
/∂ηl)(0) satisfies:

(∂ϕδ
1
/∂ηl)(y; 0)− iϕ

δ
1
(y; 0)ψδ

l
(y) is a constant in y where ψδ

l
solves the cell

problem (6.17).

4. The Hessian of the first Bloch eigenvalue at η = 0 is twice the approxi-

mate homogenized matrix qδ,∗
kl

as defined in (6.20), i.e.,

1

2

∂2λδ
1

∂ηk∂ηl
(0) = qδ,∗kl (6.27)

□

6.7 Quasiperiodic Bloch transform

We shall normalize ϕδ
1
(y; 0) to be (2π)−d/2. The Bloch problem at ϵ-scale is given

by

−(Dy
′ + iξ) · B(y

′

/ϵ)(Dy
′ + iξ)ϕδ,ϵ1 (y

′

; ξ) − δ∆y ′ϕ
δ,ϵ
1 (y

′

; ξ) = λδ,ϵ1 (ξ)ϕδ,ϵ1 (y
′

; ξ)

(6.28)

for y ∈ ϵQ and ξ ∈ ϵY ′. Due to the transformation y = y
′

/ϵ and η = ϵξ, we

have λδ,ϵ
1
(ξ) = ϵ−2λδ

1
(ϵξ) and ϕδ,ϵ

1
(y

′

; ξ) = ϕδ
1
(y

′

/ϵ; ϵξ). The above equation holds

pointwise for y ′ ∈ ϵQ and is analytic for ξ ∈ ϵ−1Uδ. For the purpose of Bloch wave

homogenization, we need to restrict the regularized Bloch eigenvalues and eigenfunc-

tions to Rd using the matrix Λ. Let us define ϕ̃δ,ϵ
1
(x; ξ) B ϕδ

1
(Λx
ϵ
; ϵξ). Also define

βδ;ϵ
1
(y

′

, ξ) B
√
δ∆y ′ϕ

δ,ϵ
1
(y

′

; ξ) and its restriction β̃δ;ϵ
1
(x, ξ) =

√
δ∆xϕ

δ,ϵ
1
(Λx; ξ), then

the restriction of the first regularized Bloch eigenfunction satisfies the following

approximate spectral problem in Rd.

−(∇x + iξ) ·A
(
x

ϵ

)
(∇x + iξ)ϕ̃

δ,ϵ
1 (x; ξ) −

√
δβ̃δ;ϵ

1
(x, ξ) = λδ,ϵ1 (ξ)ϕ̃δ,ϵ1 (x; ξ). (6.29)
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We can compare this to our original goal of solving equation (6.4) in Rd.

Although we could not solve the exact quasiperiodic Bloch spectral problem, we

could solve an approximate quasiperiodic Bloch problem using the lifted periodic

problem. Interestingly, the functions ϕ̃δ,ϵ
1
(x; ξ) and β̃δ;ϵ

1
(x, ξ) are quasiperiodic

functions of the first variable.

Now we can define a dominant Bloch coefficient for compactly supported

functions in Rd by employing the first regularized Bloch eigenfunction as follows:

Let g ∈ H−1(Rd) with compact support, then define

Bδ,ϵ1 g(ξ) B
〈
g(x), e−ix·ξ ϕ̃δ,ϵ

1
(x; ξ)

〉
H−1,H1

. (6.30)

For the next section, we need to know the limit of Bloch transform of a

sequence of functions as below.

Theorem 6.13. Let K ⊆ Rd be a compact set and (gϵ) be a sequence of functions

in L2(Rd) such that gϵ = 0 outside K. Suppose that gϵ ⇀ g in L2(Rd)-weak for

some function g ∈ L2(Rd). Then it holds that

χϵ−1UδBδ,ϵ1 g
ϵ ⇀ ĝ

in L2loc(R
d
ξ
)-weak, where ĝ denotes the Fourier transform of g.

Proof. The function Bδ,ϵ
1
gϵ is defined for ξ ∈ ϵ−1Y ′ . However, we shall treat it as a

function on Rd by extending it outside ϵ−1Uδ by zero. We can write

Bδ,ϵ1 g
ϵ(ξ) =

∫
Rd

g(x)e−ix·ξϕ̃δ,ϵ
1
(x; 0)dx+

∫
Rd

g(x)e−ix·ξ
(
ϕ̃δ1

(
x

ϵ
; ϵξ

)
− ϕ̃δ1

(
x

ϵ
; 0

))
dx.

The first term above converges to the Fourier transform of g on account of the

normalization of ϕ1(y; 0) whereas the second term goes to zero since it is O(ϵξ) due

to the Lipschitz continuity of the first regularized Bloch eigenfunction. More details

including the proof of Lipschitz continuity of Bloch eigenvalues and eigenfunctions

may be found in [CV97]. □

6.8 Homogenization theorem

In this section, we shall prove the following homogenization theorem for quasiperi-

odic media and prove it using the Bloch wave method. We shall assume summation

over repeated indices for ease of notation.
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Theorem 6.14. Let Ω be an open set in Rd and f ∈ L2(Ω). Let uϵ ∈ H1(Ω) be

such that uϵ converges weakly to u∗ in H1
0
(Ω), and

Aϵuϵ = f in Ω. (6.31)

Then

1. For all k = 1, 2, . . . , d, we have the following convergence of fluxes:

aϵkl(x)
∂uϵ

∂xl
(x) ⇀ q∗kl

∂u∗

∂xl
(x) in L2(Ω)-weak. (6.32)

2. The limit u∗ satisfies the homogenized equation:

Ahomu∗ = −
∂

∂xk

(
q∗kl
∂u∗

∂xl

)
= f in Ω. (6.33)

The proof of Theorem 6.14 is divided into the following steps. We begin by

localizing the equation (6.31) which is posed on Ω, so that it is posed on Rd. We

take the quasiperiodic Bloch transform Bδ,ϵ
1

of this equation and pass to the limit

ϵ→ 0, followed by the limit δ→ 0.

Step 1: Let ψ0 be a fixed smooth function supported in a compact set K ⊂ Rd.

Since uϵ satisfies Aϵuϵ = f, ψ0uϵ satisfies

Aϵ(ψ0u
ϵ)(x) = ψ0f(x) + g

ϵ(x) + hϵ(x) in Rd, (6.34)

where

gϵ(x) B −
∂ψ0

∂xk
(x)aϵkl(x)

∂uϵ

∂xl
(x), (6.35)

hϵ(x) B −
∂

∂xk

(
∂ψ0

∂xl
(x)aϵkl(x)u

ϵ(x)

)
, (6.36)

Step 2: Taking the first Bloch transform of both sides of the equation (6.34), we

obtain for ξ ∈ ϵ−1Uδ a.e.

Bδ,ϵ1 (Aϵ(ψ0u
ϵ))(ξ) = Bδ,ϵ1 (ψ0f)(ξ) + B

δ,ϵ
1 g

ϵ(ξ) + Bδ,ϵ1 h
ϵ(ξ). (6.37)

Step 3: Observe that ψ0uϵ ∈ H1(Rd). We have

Bδ,ϵ1 (Aϵ(ψ0u
ϵ)) =

∫
Rd
A(x/ϵ)∇(ψ0u

ϵ)(x) · ∇(e−ix·ξϕ̃δ,ϵ
1
(x; ξ))dx

= λδ,ϵ1 (ξ)

∫
Rd
(ψ0u

ϵ)(x)e−ix·ξϕ̃ϵ
1
(x; ξ)dx+

√
δ

∫
Rd
(ψ0u

ϵ)(x)e−ix·ξβ̃δ,ϵ
1
(x; ξ)dx

= λδ,ϵ1 (ξ)Bϵ1(ψ0u
ϵ) +

√
δ

∫
Rd
(ψ0u

ϵ)(x)e−ix·ξβ̃δ,ϵ
1
(x; ξ)dx (6.38)
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Step 4: In this step, we shall obtain bounds for β̃δ,ϵ
1

. This is done by employing

the analyticity of the first regularized Bloch eigenfunction in a neighborhood of

η = 0. Let us write

ϕδ1(y;η) = ϕ
δ
1(y; 0) + ηl

∂ϕδ
1

∂ηl
(y; 0) + γδ(y;η),

where γδ(y; 0) = 0, ∂γ
δ

∂ηl
(y; 0) = 0 and

√
δγδ(·;η) = O(|η|2) in L∞(Uδ;H1♯(Q)) where

the order is uniform in δ. Therefore,
√
δ
∂2γδ

∂y2
k

(·;η) = O(|η|2) in L∞(Uδ;H−1
♯
(Q))

where the order is uniform in δ. Now,

ϕδ,ϵ1 (y
′

; ξ) = ϕδ1

(
y
′

ϵ
; ϵξ

)
= ϕδ1

(
y
′

ϵ
; 0

)
+ ϵξl

∂ϕδ
1

∂ηl

(
y
′

ϵ
; 0

)
+ γδ

(
y
′

ϵ
; ϵξ

)
. (6.39)

Let us define αδ,ϵl (y
′

) B
ϵ

iϕδ
1
(y ′/ϵ; 0)

∂ϕδ
1

∂ηl

(
y
′

ϵ
; 0

)
, then αδ,ϵ

l
(y

′

) ∈ H1♯(ϵQ) solves the

cell problem at ϵ-scale posed in ϵQ, i.e.,

−Dy
′ · Bϵ(y

′

)Dy
′αδ,ϵl − δ∆y ′α

δ,ϵ
l = Dy

′ · Bϵ(y
′

)el, (6.40)

which provides the estimate

||Dy
′αδ,ϵl ||2

L2
♯
(ϵQ)

+ δ||∇y ′α
δ,ϵ
l ||2

L2
♯
(ϵQ)
≤ C, (6.41)

for some generic constant C not depending on ϵ and δ. Therefore, we get(√
δ∆y ′α

δ,ϵ
l

)
is bounded uniformly in H−1

♯ (ϵQ). (6.42)

Differentiating the equation (6.39) with respect to y ′ twice, we obtain

∂2ϕδ,ϵ
1

∂y
′2
k

(y
′

, ξ) = ξlϵ
∂2

∂y
′2
k

∂ϕδ,ϵ
1

∂ηl

(
y
′

; 0
)
+ ϵ−2

∂2γδ

∂y2
k

(
y
′

ϵ
; ϵξ

)
.

For ξ belonging to the set {ξ : ϵξ ∈ Uδ and |ξ| ≤M}, we have

√
δ

∣∣∣∣∣∣∂2γδ∂y2
k

(·;η)

∣∣∣∣∣∣ ≤ Cϵ2M2.

Therefore,
(
√
δϵ−2

∂2γδ

∂y2
k

(y
′

/ϵ; ϵξ)

)
is bounded uniformly in L2loc(R

d
ξ ;H

−1
♯ (ϵQ)).

(6.43)

From (6.42) and (6.43), we have βδ,ϵ
1
(y

′

, ξ) =
√
δξliϕ

δ
1

(
y
′

ϵ
; 0

)
∆y ′α

δ,ϵ
l

+
√
δ
ϵ2

∑M
k=1

∂2γδ

∂y2
k

(
y
′

ϵ
; ϵξ

)
is bounded uniformly in L2loc(R

d
ξ
;H−1

♯
(ϵQ)). As a conse-

quence,we obtain
(
β̃δ,ϵ
1

)
is bounded uniformly in L2loc(R

d
ξ
;H−1

loc(R
d)).
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Step 5: Now, we are ready to pass to the limit ϵ→ 0 in the equation (6.37). In

view of equation (6.38), equation (6.37) becomes

λδ,ϵ1 (ξ)Bϵ1(ψ0u
ϵ)+
√
δ

∫
Rd

(ψ0u
ϵ)(x)e−ix·ξβ̃δ,ϵ

1
(x; ξ)dx =

Bδ,ϵ1 (ψ0f)(ξ) + B
δ,ϵ
1 g

ϵ(ξ) + Bδ,ϵ1 h
ϵ(ξ). (6.44)

Let us denote Υδ,ϵ(ξ) =
∫
Rd

(ψ0u
ϵ)(x)e−ix·ξβ̃δ,ϵ

1
(x; ξ)dx. Let K2 be a compact subset

of Rd
ξ
. From the previous step, we have

||Υδ,ϵ||L2(K2) ≲ ||β̃δ,ϵ1 ||L2(K2;H−1(K))

Hence, Υδ,ϵ is bounded in L2loc(R
d
ξ
) independent of δ and ϵ. Therefore, it

converges weakly to Υδ in L2loc(R
d
ξ
) for a subsequence. Once more, since the

sequence Υδ,ϵ is bounded uniformly in δ, the weak limit Υδ is also bounded

uniformly in δ.

The proofs of convergences of all terms except the second term on LHS in (6.44)

follows the same lines as in [CV97]. Therefore, passing to the limit in (6.44) as

ϵ→ 0 we obtain for ξ ∈ Rd

1

2

∂2λδ
1

∂ηk∂ηl
(0)ξkξlψ̂ou∗(ξ) +

√
δΥδ(ξ) = (ψ0f)̂(ξ) −

(
∂ψ0

∂xk
(x)σ∗k(x)

)̂
(ξ)

− iξkq
∗
kl

(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ), (6.45)

where σ∗
k

is the weak limit of the flux aϵ
kl
(x)∂u

ϵ

∂xl
(x).

Step 6: Now, we may pass to the limit in equation (6.45) as δ → 0. Using

Theorem 6.12, Lemma 6.10, and the uniform in δ bound for Υδ, we obtain the

following equation.

q∗klξkξlψ̂0u
∗(ξ) = (ψ0f)̂(ξ) −

(
∂ψ0

∂xk
(x)σ∗k(x)

)̂
(ξ) − iξkq

∗
kl

(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ),

(6.46)

where σ∗
k

is the weak limit of the flux aϵ
kl
(x)∂u

ϵ

∂xl
(x).

The rest of the steps involving the identification of σ∗
k

and the homogenized

equation are the same as in [CV97] and are therefore omitted.
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6.9 Comments

This chapter ties in thematically with the rest of the thesis. As in previous chapters,

it was difficult to directly analyze the original operator and hence an approximation

was employed. The kind of bounds that appear are reminiscent of the method of

vanishing viscosity in conservation laws.

The problem also seems to be amenable to a different kind of analysis. Instead

of solving the regularized Bloch problem, one could create a subspace of H1 periodic

functions that only live on the “hyperplane” defined by the matrix Λ, i.e., it is

constant along the orthogonal directions. One could do a Bloch decomposition

of the degenerate operator in this subspace. Indeed, the cell problem too could

be posed in this space. However, it is not clear whether its solution matches up

with that of the standard cell problem. The subspace appears to be too small for

homogenization.

Duerinckx et. al. [DGS18] argue that the spectrum of the shifted operator

corresponding to a degenerate operator or a quasiperiodic operator is pure point and

dense. We are however able to achieve a discrete spectrum through regularization

of the operator. This turns out to be sufficient for the purposes of homogenization.



Appendix A

Perturbation Theory of
holomorphic family of type (B)

In this section, we show that a perturbation in the coefficients of the operator A

gives rise to a corresponding holomorphic family of sectorial forms of type (a).

Further, the selfadjointness of the forms coupled with the compactness of the

resolvent for the operator family ensures that it is a selfadjoint holomorphic family

of type (B). For definition of these notions, see Kato [Kat95].

Let A ∈ M>
B

and B = (bkl) be a symmetric matrix with L∞♯ (Y,R) entries.

Then for σ < α
||B||L∞ , A + σB belongs to M>

B
, where α is a coercivity constant for

A, as in ((A3)). For a fixed η0 ∈ Y
′ and for σ0 B α

2||B||L∞ , let us define the operator

family

A(η0)(τ) = −(∇+ iη0) · (A+ τB)(∇+ iη0), τ ∈ R,

where R = {z ∈ C : |Re(z)| < σ0, | Im(z)| < σ0}. For real τ, −σ0 < τ < σ0,

A + τB is coercive with a coercivity constant α/2. The holomorphic family of

sesquilinear forms t(τ) associated to operator A + τB, with the τ-independent

domain D(t(τ)) = H1♯(Y), is defined as

t(τ)[u, v] B

∫
Y

(akl(y) + τbkl(y))
∂u

∂yl

∂v

∂yk
dy+ iη0,l

∫
Y

(akl(y) + τbkl(y))u
∂v

∂yk
dy

− iη0,k

∫
Y

(akl(y) + τbkl(y)) v
∂u

∂yl
dy+ η0,lη0,k

∫
Y

(akl(y) + τbkl(y))uv dy,

where η0 B (η0,1, η0,2, . . . , η0,d) and summation over repeated indices is as-

sumed.

Theorem A.1. t(τ) is a holomorphic family of type (a).

147
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Proof. The quadratic form associated with t(τ) is as follows:

t(τ)[u] B

∫
Y

(akl(y) + τbkl(y))
∂u

∂yl

∂u

∂yk
dy+ iη0,l

∫
Y

(akl(y) + τbkl(y))u
∂u

∂yk
dy

− iη0,k

∫
Y

(akl(y) + τbkl(y))u
∂u

∂yl
dy+ η0,kη0,l

∫
Y

(akl(y) + τbkl(y))uu dy.

(i) t(τ) is sectorial.

Let us write τ = ρ+ iγ, then the quadratic form t(τ) can be written as the

sum of its real and imaginary parts:

t(τ) = ℜt(τ)[u] + i ℑt(τ)[u]

where the real part is

ℜt(τ)[u] B

∫
Y

(akl(y) + ρbkl(y))
∂u

∂yl

∂u

∂yk
dy+ iη0,l

∫
Y

(akl(y) + ρbkl(y))u
∂u

∂yk
dy

− iη0,k

∫
Y

(akl(y) + ρbkl(y))u
∂u

∂yl
dy+ η0,kη0,l

∫
Y

(akl(y) + ρbkl(y))uu dy,

(A.1)

and the imaginary part is

ℑt(τ)[u] B

∫
Y

γbkl(y)
∂u

∂yl

∂u

∂yk
dy− 2 Im

(
η0,l

∫
Y

γbkl(y)u
∂u

∂yk
dy

)
+ η0,kη0,l

∫
Y

γbkl(y)uu dy. (A.2)

The real part (A.1) of t(τ)[u] may also be written as

Re t(τ)[u] B
∫
Y

(akl(y) + ρbkl(y))
∂u

∂yl

∂u

∂yk
dy

+ 2Re
(
iη0,l

∫
Y

(akl(y) + ρbkl(y))u
∂u

∂yk
dy

)
+ η0,kη0,l

∫
Y

(akl(y) + ρbkl(y))uu dy. (A.3)

The first term in (A.3) is estimated from below as follows:∫
Y

(akl(y) + ρbkl(y))
∂u

∂yl

∂u

∂yk
dy ≥

α

2

∫
Y

|∇u|2 dy. (A.4)

The second term in (A.3) may be bounded from above as follows:

Re
(
iη0,l

∫
Y

(akl(y) + ρbkl(y))u
∂u

∂yk
dy

)
≤ C1||u||L2

♯
(Y)||∇u||L2

♯
(Y)

≤ C1C∗||u||
2

L2
♯
(Y)

+
C1

C∗
||∇u||2

L2
♯
(Y)

= C2||u||
2

L2
♯
(Y)

+
α

4
||∇u||2

L2
♯
(Y)
, (A.5)
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where C∗ = 4C1

α
and C1, C2 are some constants independent of u and ρ.

The last term in (A.3) is estimated as

η0,kη0,l

∫
Y

(akl(y) + ρbkl(y))uu dy ≤ C3||u||
2

L2
♯
(Y)
, (A.6)

for some C3 > 0.

Finally, combining (A.4), (A.5) and (A.6), we obtain

ℜt(τ)[u] ≥
α

4
||u||2

H1
♯
(Y)

− C4||u||
2

L2
♯
(Y)
, (A.7)

for some C4 > 0.

Estimating the imaginary part (A.2) from above, we obtain

|ℑt(τ)[u]| ≤ C5||∇u||
2

L2
♯
(Y)

+ C6||u||
2

L2
♯
(Y)
, (A.8)

for some positive C5, C6.

Now, choose a scalar C7 so that C7 = 4C5

α
.

The inequality (A.7) may be written as

ℜt(τ)[u] + C4||u||
2

L2
♯
(Y)

+
C6

C7
||u||2

L2
♯
(Y)
≥
α

4
||u||2

H1
♯
(Y)

+
C6

C7
||u||2

L2
♯
(Y)
. (A.9)

Now, we define a new quadratic form t̃[u] B t[u] + (C4 +
C6

C7
)||u||2

L2
♯
Y
, then

inequality (A.9) becomes

ℜt̃(τ)[u] ≥
α

4
||u||2

H1
♯
(Y)

+
C6

C7
||u||2

L2
♯
(Y)
. (A.10)

This may be further written as

ℜt̃(τ)[u] −
α

4
||u||2

L2
♯
(Y)
≥
α

4
||∇u||2

L2
♯
(Y)

+
C6

C7
||u||2

L2
♯
(Y)
. (A.11)

On multiplying throughout by C7, the inequality (A.11) becomes

C7

{
ℜt̃(τ)[u] −

α

4
||u||2

L2
♯
(Y)

}
≥ C5||∇u||

2

L2
♯
(Y)

+ C6||u||
2

L2
♯
(Y)
. (A.12)

Since ℑ̃t(τ)[u] = ℑt(τ)[u], combining the inequalities (A.8) and (A.12), we

obtain

|ℑ̃t(τ)[u]| ≤ C7

{
ℜt̃(τ)[u] −

α

4
||u||2

L2
♯
(Y)

}
.

This proves that the form t̃(τ) is sectorial. However, the property of sectoriality

is invariant under a shift. Therefore, t(τ) is sectorial, as well.

(ii) t(τ) is closed.
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This follows from the inequality (A.10). If un
t−convergence−−−−−−−−→ u, then

ℜt(τ)[un − um] → 0 as n,m → ∞. By (A.10), (un) is a Cauchy sequence in

H1♯(Y). By completeness, there is v ∈ H1♯(Y) to which the sequence converges.

However, t-convergence implies L2 convergence, and therefore, u = v. Clearly,

t(τ)[un − u] → 0.

(iii) t(τ) is a holomorphic family of type (a).

We have proved that t(τ)[u] is sectorial and closed. It remains to prove that

the form is holomorphic. This is easily done since t(τ)[u] is linear in τ for each

fixed u ∈ H1♯(Y). □

The first representation theorem of Kato ensures that there exists a unique

m-sectorial operator with domain contained in H1♯(Y) associated with each t(τ).

A proof may be found in [Kat95, p.322]. The family of such operators associated

with a holomorphic family of sesquilinear forms of type (a) is called a holomorphic

family of type (B). The aforementioned m-sectorial operator is given by

A(η0)(τ) = −(∇+ iη0) · (A+ τB)(∇+ iη0).

It follows from the symmetry of the matrix A+ τB that the family A(η0)(τ) is a

selfadjoint holomorphic family of type (B). Moreover, by the compact embedding

of H1♯(Y) in L2♯(Y), the operator A(η0)(τ)+C∗I has compact resolvent for each τ ∈ R

for some appropriate constant C∗, independent of τ ∈ R.

Hence, by Kato-Rellich Theorem, there exists a complete orthonormal set of

eigenvectors associated with the operator family A(η0)(τ) which are analytic for

the whole interval −σ0 < τ < σ0.
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