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Discrete Random Variables



A “discrete random variable” is a function X : S → T where S is a sample space 
equipped with a probability P , and T is a countable (or finite) subset of the real 
numbers.

One can then define a probability mass function fX : T → [0,1] on the range of X 
by fX(t) = P(X=t).

Given any event A in T, we can then define its probability to be 

P(A) = Σt∊A fX(X=t)



Common distributions



X ∼ Uniform({1, 2, . . . , n}) P (X = k ) = 1/n    for all 1 ≤ k ≤ n

X ∼ Bernoulli(p) P (X = 1 ) = p and P (X=0 ) = 1-p

X ∼ Binomial(n,p) P (X = k ) = C(n,k) pk (1-p)n-k    for all 1 ≤ k ≤ n

X ∼ Geometric(p) P (X = k ) = p(1-p)k-1    for all k=1,2,3,...

X ∼ Poisson(λ) P (X = k ) = e-λ λk / k!   for all k=0,1,2,3,...



Independence



Two random variables X and Y are independent if (X ∈ A) and (Y ∈ B ) are independent for 
every event A in the range of X and every event B in the range of Y .



Two random variables X and Y are independent if (X ∈ A) and (Y ∈ B ) are independent for 
every event A in the range of X and every event B in the range of Y .

Example:

It is possible to view the result of each die as a random variable in its own right, and then consider the 
possible results of the pair of random variables. Let X, Y ∼ Uniform({1, 2, 3, 4, 5, 6}) and suppose X and Y 
are independent. If x, y ∈ {1, 2, 3, 4, 5, 6} what is P (X = x, Y = y )?

By independence P (X = x, Y = y ) = P (X = x)P (Y = y ) = 1/6 · 1/6 = 1/36.



For many problems it is useful to think about repeating a single experiment many times with the results of each 
repetition being independent from every other. Though the results are assumed to be independent, the 
experiment itself remains the same, so the random variables produced all have the same distribution. 

The resulting sequence of random variables X1 , X2 , X3 , . . . is referred to as “i.i.d.” (standing for “independent 
and identically distributed”).



Conditional, Joint, and Marginal Distributions



Let X be a random variable on a sample space S and let A ⊂ S be an event such that P(A) > 
0. Then the probability Q described by Q(B) = P (X ∈ B | A) is called the “conditional 
distribution” of X given the event A.



If X and Y are discrete random variables, the “joint distribution” of X and Y is the 
probability Q on pairs of values in the ranges of X and Y defined by

Q((a, b)) = P (X = a, Y = b).



In many cases random variables are dependent in such a way that the distribution of one variable is 
known in terms of the values taken on by another.

Example

Let X ∼ Uniform({1, 2}) and let Y be the number of heads in X tosses of a fair coin.

(Y | X = 2) ~ Binomial (2,½)(Y | X = 1) ~ Bernoulli (½)



Example

Let X ∼ Uniform({1, 2}) and let Y be the number of heads in X tosses of a fair coin.

(Y | X = 2) ~ Binomial (2,½)(Y | X = 1) ~ Bernoulli (½)

Joint Distribution P(X=x and 
Y=y) computed using the 
formula

P(Y=y and X=x) = P(Y=y|X=x) 
P(X=x)



Just because X and Y are dependent on each other doesn’t mean they need to be thought of 
as a pair. It still makes sense to talk about the distribution of X as a random variable in its own 
right while ignoring its dependence on the variable Y .

Marginal Distribution P(X=x) 
computed using the formula

P(X=x) = sum over y in 
                P(X=x , Y=y) 



Distribution of f (X ) and f (X1 , X2 , . . . , Xn )



Distribution of f (X ) and f (X1 , X2 , . . . , Xn )

P(f(X)=a) = P(X ∊ f-1({a}))



X ∼ Uniform({−2, −1, 0, 1, 2})

f(x) = x2

Then 

P(f(X)=0) = P(X=0) = 1/5

P(f(X)=1) = P(X=1 OR X=-1) = 2/5

P(f(X) = 4) = P(X=-2 OR X=2) = 2/5 



X, Y ∼ Bernoulli(p)

Z = X+Y ~ Binomial(2,p)



X ∼ Poisson(λ1) and Y ∼ Poisson(λ2 )

Z = X+Y ~ Poisson(λ1+λ2)



Expected value



Let X : S → T be a discrete random variable (so T is countable). Then the expected value (or 
average) of X is written as E [X ] and is given by

E [X ] = Σt∈T t · P (X = t) 
provided that the sum converges absolutely. 

In this case we say that X has “finite expectation”. If the sum diverges to ±∞ we say the 
random variable has infinite expectation. If the sum diverges, but not to infinity, we say the 
expected value is undefined.







Suppose that X and Y are discrete random variables, both with finite expected value and 
both defined on the same sample space S. If a and b are real numbers then

(1) E[a] = a;
(2) E [aX ] = aE [X ];
(3) E [X + Y ] = E [X ] + E [Y ];
(4) E [aX + bY ] = aE [X ] + bE [Y ].
(5) If X ≥ 0 then E [X ] ≥ 0.

Suppose that X and Y are discrete random variables, both with finite expected value and 
both defined on the same sample space S. If X and Y are independent, then 

E [XY ] = E [X ]E [Y ].

Common Properties



Let X : S → T be a discrete random variable and define a function f : T → U . Then the 
expected value of f(X) may be computed as 

E [f (X )] = Σu∊U u · P (f(X) = u) 

= Σt∊T f (t) · P (X = t).



Variance and standard deviation



Let X be a random variable with finite expected value. Then the variance of the random 
variable is written as V ar [X ] and is defined as 

Var [X ] = E [(X − E [X ])2 ]

The standard deviation of X is written as SD [X ] and is defined as 

SD [X ] = √Var [X ]



Let a ∈ R and let X be a random variable with finite variance (and thus, with finite expected 
value as well). Then,

(a) Var [aX ] = a2 · Var [X ];
(b) SD [aX ] = |a| · SD [X ];
(c) Var [X + a] = Var [X ]; 
(d) SD [X + a] = SD [X ].

Let X be a random variable for which E[X ] and E[X2 ] are both finite. Then

Var[X ] = E[X2] − (E[X])2 .

If X and Y are independent random variables, both with finite expectation and finite variance, 
then 

(a) Var [X + Y ] = Var [X ] + Var [Y ]; and
(b) SD [X + Y ] = √(SD [X ])2 + (SD [Y ])2 .

Common Properties



Common distributions



Let X be a discrete random variable with finite expected value and finite, non-zero variance. 
Then Z = (X−E[X])/SD[X] has zero expectation and variance of 1.



Markov and Chebyshev Inequalities



(Markov’s Inequality) Let X be a discrete random variable which 
takes on only non-negative values and suppose that X has a finite 
expected value. Then for any c > 0,

P (X ≥ c) ≤E[X]/c



(Chebyshev’s Inequality) Let X be a discrete 
random variable with finite, non-zero variance. 
Then for any k > 0,

P (|X − μ| ≥ kσ ) ≤1/k2

where μ is the expectation of X and σ is the 
standard deviation of X.



Conditional expectation and conditional 
variance



Let X : S → T be a discrete random variable and let A ⊂ S be an event for which 
P (A) > 0. The “conditional expected value” of X given A is

   E [X|A] =  Σ    t · P (X = t|A)
     t∈T

and the “conditional variance” of X given A is

V ar [X|A] = E [(X − E [X|A])2 |A].







Covariance and correlation



Let X and Y be two discrete random variables 
on a sample space S. Then the “covariance of 
X and Y ” is defined as

Cov [X, Y ] = E [(X − E [X ])(Y − E [Y ])]

Cov [X, X ] = V ar [X ].

Let X and Y be discrete random variables with 
finite mean for which E [XY ] is also finite. 
Then

Cov [X, Y ] = E [XY ] − E [X ]E [Y ].



Find covariance



Let X, Y , and Z be discrete random variables, and let a, b ∈ R. Then,

(a) Cov [X, Y ] = Cov [Y , X ];
(b) Cov [X, aY + bZ ] = a · Cov [X, Y ] + b · Cov [X, Z ];
(c) Cov [aX + bY , Z ] = a · Cov [X, Z ] + b · Cov [Y , Z ]; and
(d) If X and Y are independent with a finite covariance, then Cov [X, Y ] = 0.

The converse of the last statement is false.

The quantity Cov [X,Y ]/σX σY,  where σX, σY are standard deviations of X and Y 
respectively, is known as the “correlation” of X and Y and is often denoted as ρ
[X, Y ].

Common Properties



Continuous Random Variables



Uncountable sample spaces and densities



If our sample space is uncountable, then we cannot give a positive probability to a 
singular outcome, since, in that case, additivity of disjoint events would force such 
a probability function to exceed 1, which we do not allow.



If our sample space is uncountable, then we cannot give a positive probability to a 
singular outcome, since, in that case, additivity of disjoint events would force such 
a probability function to exceed 1, which we do not allow.

Hence, we may only prescribe non-zero probabilities to other uncountable subsets 
of the sample space. 



If our sample space is uncountable, then we cannot give a positive probability to a 
singular outcome, since, in that case, additivity of disjoint events would force such 
a probability function to exceed 1, which we do not allow.

Hence, we may only prescribe non-zero probabilities to other uncountable subsets 
of the sample space. 

The sample space may be thought of as a subset of the Euclidean space Rn and 
therefore prescribing probabilities is like prescribing areas/volumes to subsets of 
Rn. It is impossible to prescribe “volume” to every subset of Rn under reasonable 
demands such as empty set should have zero volume, volume should not change 
under translations, volume is more for larger sets, etc.



A reasonable class of events to which a probability can be assigned is the class of 
sigma-algebras which is any collection of events of the sample space S such that

(1) S ∈ F

(2) If A ∈ F then Ac ∈ F

(3) If A1 , A2 , . . . is a countable collection of sets in F then ሀ { An | n ∊ ℕ }∈ F



Let S be a sample space and let F be a σ-algebra of S. A “probability” is a function 
P : F → [0, 1] such that 

(1) P (S ) = 1;

(2) If E1 , E2 , ... are a countable collection of disjoint events in F, then

P(ሀ Ej ) = Σ P(Ej)

The triplet (S, F, P ) is referred to as a probability space.



Let f : R → R is called a density function if f satisfies the following:

(i) f (x) ≥ 0,
(ii) f is piecewise-continuous, and
(iii) ∫R f (x) dx = 1.

Given a density function, we can define a probability on R by P(E) = ∫E f (x) dx



Continuous Random Variables



Let (S, F, P ) be a probability space and let X : S → R be a function. Then X is a random 
variable provided that whenever B is an event in R (i.e. a Borel set), X−1(B) is also an 
event in F.

Let (S, F, P ) be a probability space. A random variable X :S → R is called a continuous 
random variable if there exists a density function fX : R → R such that for any event A in 
R, P (X ∈ A) = ∫A fX (x) dx. The function fX is called the probability density function of 
X.

If X is a random variable then its cumulative distribution function F : R → [0, 1] is 
defined by F (x) = P (X ≤ x).



Common Distributions



X ∼ Uniform(a, b) f(x) = 1/(b-a) for x in (a,b), 0 o/w

X ∼ Exp(λ) f(x) = λ e-λx for x > 0, 0 o/w

X ∼ Normal(μ, σ2 )



Multiple continuous random variables



Consider the open rectangle in R2 given by R = (0, 1) × (3, 5) and |R|= 2 denote its area. 

Let (X, Y ) have a joint density f : R2 → R given by

f(x,y) = ½ for (x,y) in R and 0 elsewhere, then for any Borel set A in R,

P(A) = ∫∫A f (x,y) dxdy defines a probability 



Thank you


