Introduction to MATLAB

SI 507 : Numerical Analysis
Indian Institute of Technology Bombay
August 5, 2016

Introduction

- MATLAB software is used for computation in engineering, science and applied mathematics.
- Unlike Mathematica, Symbolic computations and manipulations are not readily available. (through Symbolic Toolbox).
- Compared to C++ and Fortran, MATLAB is user-friendly, however, the execution speed is slower.
- Yet, its interactive syntax and extensive documentation, and suitability for solving PDEs has made it the bread and butter of applied mathematicians everywhere.

Introduction

- On startup, MATLAB presents a multipaneled desktop including
- Command Window where you can type MATLAB commands at the prompt >>.
- Current Directory shows the contents of current path.
- Workspace window shows the variable names currently defined.
- Command History records all the commands ever performed.
- Help is your friend. Use help plot or doc plot to find out information about the plot command.

Exercises

- Use the doc command to find out how to find prime factors of an integer. What is the largest prime factor of 20830123?

Exercises

- Use the doc command to find out how to find prime factors of an integer. What is the largest prime factor of 20830123?
Ans. 541.

Exercises

- Use the doc command to find out how to find prime factors of an integer. What is the largest prime factor of 20830123?
Ans. 541.
- Report the current date and time.

Arrays and Matrices

Arrays and Matrices

To write a matrix, enclose its elements in square brackers, use spaces or commas to separate columns and use semicolons or new lines to separate rows.

$$
\begin{aligned}
& \gg A=[1,2,3 ; 4,5,6 ; 7,8,9] \\
& A= \\
& \begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}
\end{aligned}
$$

Column Vector

$$
\begin{aligned}
& \gg b=[0 ; 1 ; 0] \\
& b= \\
& 0 \\
& 1 \\
& 0
\end{aligned}
$$

Dimensions

size	dimensions of a matrix
ndims	number of dimensions
length	size of longest dimension
find	indices of the non-zero elements

Common Matrices

[]	empty matrix
$\operatorname{eye}(3)$	Identity Matrix of given dimension
$\operatorname{diag}\left(\left[\begin{array}{ll}1 & 2\end{array}\right]\right)$	Diagonal Matrix with given elements
$\operatorname{zeros}(2,3)$	Zero Matrix of given dimensions
ones $(2,4)$	Matrix of ones of given dimensions
$\operatorname{triu}(A,-1)$	Upper triangular part of A one below the main diagonal
$\operatorname{tril}(A, 1)$	Lower Triangular part of A one above the main diagonal
rand,randn	Matrices of given dimensions with random entries
$i=[0: 0.2: 10]$	Row vector containing entries from 0 to 10 spaced by 0.2

Referencing Elements

```
>> A(2,3) % single element
ans =
6
>> A(2) % one index from a matrix
ans =
4
```


Referencing Elements

```
>> A([ll 2]) % multiple elements
ans =
4
>> A(1:2,2:3) % a submatrix
ans =
2 3
5 6
```


Referencing Elements

```
>> A(:,3) % third column
ans =
3
6
9
>> A(2,:) % second row
ans =
4 5 6
```


Referencing Elements

		\% full matrix
ans =		
1	2	3
4	5	6
7	8	9

Referencing Elements

```
>> A(:) % all entries in a column
ans =
1
4
7
2
5
8
3
6
9
```


Relational Operators

$==$	equal to
$\sim=$	not equal to
$<$	less than
$>$	greater than
$<=$	less than or equal to
$>=$	greater than or equal to

Referencing using Relational Operators

```
>> A>5
    ans =
0 0}
0 0
1 1
>> A(ans)
ans =
7
8
6
9
```


Matrix Operations

The common matrix operations are $+,-, *,{ }^{\wedge}, ’, \backslash$.

$$
\begin{aligned}
& \text { >> } A=[1,2,3 ; 4,5,6 ; 7,8,9] ; \\
& \text { >> } \mathrm{B}=[1,0,0 ; 5,8,7 ; 0,0,1] \text {; } \\
& \text { >> } \mathrm{A}+\mathrm{B} \quad \% \text { matrix addition } \\
& \text { ans = } \\
& 9 \quad 1313 \\
& \begin{array}{lll}
7 & 8 & 10
\end{array} \\
& \text { >> } \mathrm{A} * \mathrm{~B} \quad \% \text { matrix multiplication } \\
& 29 \quad 40 \quad 41 \\
& 47 \quad 64 \quad 65
\end{aligned}
$$

Solving Linear Systems

```
>> B=[1,0,0;5,8,7;0,0,1];
>> b=[0;1;-1];
>> x=B\b
x =
0
1
-1
>> b-B*x
ans =
0
0
0
```


More Matrix Operations

\backslash	solve linear systens
rank	rank
det	determinant
norm	2 -norm
expm	matrix exponential
lu	LU Factorization
qr	QR Factorization

Elementwise Operations

- Scalars are always added elementwise to arrays.

```
>> b=[0,2,1];
>> b+2
ans =
2 4
3
```

- Elementwise Multiplication or Division can be performed by preceding the operator with a dot.

\gg	A. $* B$	
ans $=$		
1	0	0
20	40	42
0	0	9

- Elementary functions like sin, cos etc. operate elementwise.

Dimension Reducing Operations

sum	max	mean	any
min	diff	median	all
sort	prod	std	

Task 2

- Let A be a random matrix generated by rand(8). Find the maximum values in each column, in each row, overall. Also use find to find the indices of all elements that are larger than 0.9.

Task 2

- Let A be a random matrix generated by rand(8). Find the maximum values in each column, in each row, overall. Also use find to find the indices of all elements that are larger than 0.9.
- How to add the diagonal elements of a matrix?

Task 2

- Let A be a random matrix generated by rand(8). Find the maximum values in each column, in each row, overall. Also use find to find the indices of all elements that are larger than 0.9.
- How to add the diagonal elements of a matrix?
- Use diag to create a 16×16 matrix with -2 on the main diagonal, 1 on the super- and the sub-diagonal.

Task 2

- Let A be a random matrix generated by rand(8). Find the maximum values in each column, in each row, overall. Also use find to find the indices of all elements that are larger than 0.9.
- How to add the diagonal elements of a matrix?
- Use diag to create a 16×16 matrix with -2 on the main diagonal, 1 on the super- and the sub-diagonal.
- How to multiply the third column of a matrix by 2 ?

Scripts and
 Functions

Scripts

- A file containing MATLAB commands saved with a .m extension is called an M-file.
- A collection of consecutive commands stored in an M-file is called a Script.
- MATLAB comes with an in-built editor.
- You can execute any M-files that are located in the path.

An Example Script

>> type('example.m')
\% This is an example script
\% that prints a random number
rand(1)
>>

An Example Script

>> type('example.m')
\% This is an example script
\% that prints a random number
rand (1)
>>
A comment

An Example Script

>> type('example.m')
\% This is an example script
\% that prints a random number
rand (1)
A command

Functions

- A function is an M-file that starts with a line such as function [out1,out2] = myfun(in1,in2,in3).
- It can have any number of input and output variables.
- The myfun part should be the name of the file. (myfun.m)
- A function differs from a script in that the variables defined within a function do not exist outside of it.
- Thus, a function has its own local workspace.

An Example Function

\% This program returns the two
$\%$ roots of a quadratic equation.
function $[x 1, x 2]=$ quadsol (a, b, c)
$\mathrm{d}=\operatorname{sqrt}\left(\mathrm{b}^{\wedge} 2-4 * a * \mathrm{c}\right)$;
$\mathrm{x} 1=(-\mathrm{b}+\mathrm{d}) /(2 * \mathrm{a})$;
$\mathrm{x} 2=(-\mathrm{b}-\mathrm{d}) /(2 * \mathrm{a})$;

An Example Function

\% This program returns the two
$\%$ roots of a quadratic equation.
A comment

```
function [x1,x2] = quadsol(a,b,c)
d = sqrt(b^2-4*a*c);
x1 = (-b+d)/(2*a);
x2 = (-b-d)/(2*a);
```


An Example Function

\% This program returns the two
$\%$ roots of a quadratic equation.
function $[x 1, x 2]=$ quadsol (a, b, c)
$\mathrm{d}=\operatorname{sqrt}\left(\mathrm{b}^{\wedge} 2-4 * a * \mathrm{c}\right)$;
$\mathrm{x} 1=(-\mathrm{b}+\mathrm{d}) /(2 * \mathrm{a})$;
$\mathrm{x} 2=(-\mathrm{b}-\mathrm{d}) /(2 * a)$;


```
if (x==inf) || ~isreal(x)
        disp('Wrong Input')
    y=NaN;
elseif (x == round(x)) && (x>0)
    y = prod(1:(x-1));
    else
        y = gamma(x);
    end
```


if

```
if (x==inf) || ~isreal(x)
    disp('Wrong Input')
    y=NaN;
elseif (x == round(x)) && (x>0)
    y = prod(1:(x-1));
else
    y = gamma(x);
end
```

Branches of if statements to find the factorial of a number.

switch

switch units
case 'length'
disp('meters')
case 'volume'
disp('liters')
case 'time'
disp('seconds')
otherwise
disp('I don't know')
end

switch

switch units
case 'length' disp('meters')
case 'volume'
disp('liters')
case 'time'
disp('seconds')
otherwise
disp('I don't know')
end

Commands following the matching case are executed.

for Loop

>> $f=\left[\begin{array}{ll}1 & 1\end{array}\right] ;$
\gg for $n=3: 10$
$f(n)=f(n-1)+f(n-2) ;$
end

for Loop

>> $f=\left[\begin{array}{ll}1 & 1\end{array}\right] ;$
\gg for $n=3: 10$
$f(n)=f(n-1)+f(n-2) ;$
end

A for loop to generate the Fi bonacci Sequence

Another Example

$$
\begin{aligned}
& \gg x=1: 100 ; s=0 ; \\
& \gg \text { for } j=\text { find(isprime (} x) \text {) } \\
& \quad s=s+x(j) ; \\
& \quad \text { end }
\end{aligned}
$$

Another Example

$$
\begin{aligned}
& \gg x=1: 100 ; s=0 ; \\
& \gg \text { for } j=\text { find(isprime }(x)) \\
& \quad s=s+x(j) \\
& \text { end }
\end{aligned}
$$

We can use any row vector in a for loop.

while Loop

$$
\begin{aligned}
& x=0 ; \\
& \text { while } x<50 \\
& \qquad x=x+1 \\
& \text { end }
\end{aligned}
$$

while Loop

$$
\begin{aligned}
& x=0 ; \\
& \text { while } x<50 \\
& \qquad x=x+1 \\
& \text { end }
\end{aligned}
$$

A while loop iterates a command as many times as the condition is fulfilled.

Another Example

$$
\begin{aligned}
& \mathrm{n}=0 ; \\
& \text { while } \mathrm{x}>1 \\
& \mathrm{x}=\mathrm{x} / 2 ; \\
& \mathrm{n}=\mathrm{n}+1 ; \\
& \text { if } \mathrm{n}>50 \\
& \quad \text { break } \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

Another Example

$$
\begin{aligned}
& \mathrm{n}=0 ; \\
& \text { while } \mathrm{x}>1 \\
& \mathrm{x}=\mathrm{x} / 2 ; \\
& \mathrm{n}=\mathrm{n}+1 ; \\
& \text { if } \mathrm{n}>50 \\
& \quad \text { break } \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

A break statement may be embedded in a while loop to prevent infinite loops.

Review Exercises

Store the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 4 \\
1 & 7 & 1
\end{array}\right)
$$

in the variable A.

Store the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 4 \\
1 & 7 & 1
\end{array}\right)
$$

in the variable A.

$$
\begin{aligned}
& \text { >> } A=\left[\begin{array}{llllllll}
1 & 2 & 1 ; & 2 & 3 & 4 ; 17 & 1
\end{array}\right] \\
& \mathrm{A}= \\
& \begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 4 \\
1 & 7 & 1
\end{array}
\end{aligned}
$$

Create row vector

$$
\left(\begin{array}{lllllll}
2 & 4 & 6 & 8 & 10 & 12 & 14
\end{array}\right)
$$

using : and linspace.

Create row vector

$$
\left(\begin{array}{lllllll}
2 & 4 & 6 & 8 & 10 & 12 & 14
\end{array}\right)
$$

using : and linspace.

```
>> [2:2:14]
    ans =
        2
    >> linspace(2,14,7)
    ans =
        2
```

Print the $(2,2)$ element of the matrix A. Also print the 5 th element of A.

Print the $(2,2)$ element of the matrix A. Also print the 5 th element of A.

$$
\begin{gathered}
\gg A(2,2) \\
\text { ans }= \\
3 \\
\gg A(5) \\
\text { ans }= \\
3
\end{gathered}
$$

Print first row and third column of A.

Print first row and third column of A.

$$
\begin{aligned}
& \gg \mathrm{A}(1,:) \\
& \text { ans }= \\
& 1 \\
& >\mathrm{A}(:, 3) \\
& \text { ans }= \\
& 1 \\
& 4 \\
& 1
\end{aligned}
$$

Use find to return all indices containing entries greater than 2 , then print those entries.

Use find to return all indices containing entries greater than 2, then print those entries.

\gg find $(\mathrm{A}>2)$
ans $=$
5
6
8
$\gg A($ find $(A>2))$
ans $=$
3
7
4

Use find to return all indices containing entries greater than 2 , then print those entries.

Store the row vector

$$
\left(\begin{array}{lll}
2 & 4 & 6
\end{array}\right)
$$

in b and the column vector

$$
\left(\begin{array}{l}
2 \\
5 \\
1
\end{array}\right)
$$

in c.

Store the row vector

$$
\left(\begin{array}{lll}
2 & 4 & 6
\end{array}\right)
$$

in b and the column vector

$$
\left(\begin{array}{l}
2 \\
5 \\
1
\end{array}\right)
$$

in c.
>> $c=[2 ; 5 ; 1]$

$$
\begin{aligned}
& \gg b=\left[\begin{array}{lll}
2 & 4 & 6
\end{array}\right] \\
& b= \\
& 2
\end{aligned}
$$

$c=$
2
5
1

Join c to A and b to A along appropriate dimensions.

Join c to A and b to A along appropriate dimensions.

$$
\begin{aligned}
& \gg \mathrm{D}=\left[\begin{array}{lll}
\mathrm{A} & \mathrm{C}
\end{array}\right] \\
& \mathrm{D}= \\
& 1
\end{aligned} \sqrt{2} \begin{array}{lll}
\\
2 & 3 & 4 \\
1 & 7 & 1
\end{array}
$$

$$
\begin{array}{rll}
\gg C & =[\mathrm{A} ; \mathrm{b}] \\
\mathrm{C} & = \\
1 & 2 & 1 \\
2 & 3 & 4 \\
1 & 7 & 1 \\
2 & 4 & 6
\end{array}
$$

Assuming that all the entries of A are non-zero, multiply each column by a number so that the sum of the column is 1 . Do not use loops. Use the sum and diag commands.

Assuming that all the entries of A are non-zero, multiply each column by a number so that the sum of the column is 1 . Do not use loops. Use the sum and diag commands.

$$
\begin{aligned}
& \text { >> A=A*diag(1./sum(A)) } \\
& \mathrm{A}= \\
& 0.2500 \quad 0.1667 \quad 0.1667 \\
& 0.5000 \quad 0.2500 \quad 0.6667 \\
& 0.2500 \quad 0.5833 \quad 0.1667
\end{aligned}
$$

Modify the previous command to allow for zero columns.

Modify the previous command to allow for zero columns.

$$
\begin{aligned}
& \text { >>B=[} \left.0110 ; 0 \begin{array}{llllll}
0 & 1 ; ~ & 0 & 3 & 4
\end{array}\right] \\
& \text { B }= \\
& \begin{array}{lll}
0 & 1 & 0 \\
0 & 2 & 1 \\
0 & 3 & 4
\end{array} \\
& \text { >> } \mathrm{p}=\operatorname{diag}(\text { sum (B)) } \\
& \begin{array}{ccc}
p= & & \\
0 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \gg p\left(p^{\sim}=0\right)=1 . / p\left(p^{\sim}=0\right) \\
& \mathrm{p}= \\
& \begin{array}{lcr}
0 & 0 & 0 \\
0 & 0.1667 & 0 \\
0 & 0 & 0.2000
\end{array} \\
& \text { >> B*p } \\
& \text { ans = } \\
& \begin{array}{ccc}
0 & 0.1667 & 0 \\
0 & 0.3333 & 0.2000 \\
0 & 0.5000 & 0.8000
\end{array}
\end{aligned}
$$

Write an M-file containing a function that prints your name.

Write an M-file containing a function that prints your name.

$$
\begin{aligned}
& \text { function [] = myname(); } \\
& \text { disp('Vivek'); }
\end{aligned}
$$

Write an M -file containing a function that takes two inputs and adds them and returns it as output.

Write an M-file containing a function that takes two inputs and adds them and returns it as output.

```
function [x] = adding(a,b);
x=a+b;
```

Write a function that inputs a number and returns a logical true value if it is even. Use if and mod command.

> Write a function that inputs a number and returns a logical true value if it is even. Use if and mod command.

```
function [x] = evenodd(a);
if \(\bmod (a, 2)==0\)
        \(\mathrm{x}=1\);
else
        \(\mathrm{x}=0\);
end
```


Task 2.1

- Write a function allfacts to find all the factors of an integer.

Task 2.1

- Write a function allfacts to find all the factors of an integer.
- Use the above function to write another function isperfect to test whether a number is perfect. Recall that a number is said to be perfect if it is the sum of its factors, not including itself.

Task 2.1

- Write a function allfacts to find all the factors of an integer.
- Use the above function to write another function isperfect to test whether a number is perfect. Recall that a number is said to be perfect if it is the sum of its factors, not including itself.
- Now use allfacts to find the largest prime factor of an integer.

Solutions

- allfacts:

$$
\begin{aligned}
& \text { function }[x]=\text { allfacts }(a) ; \\
& m=[1: a] ; \\
& x=m(\bmod (a, m)==0)
\end{aligned}
$$

Solutions

- isperfect:

$$
\begin{aligned}
& \text { function }[x]=\text { isperfect }(a) \text {; } \\
& \text { if } 2 * a==\operatorname{sum}(\text { allfacts }(a)) \\
& \quad x=1 ; \\
& \text { else } \\
& \quad x=0 \text {; } \\
& \text { end }
\end{aligned}
$$

Solutions

- largest prime factor of an integer:

$$
\begin{aligned}
& \text { function }[x]=\text { largestprimefactor }(a) ; \\
& p=\operatorname{allfacts}(a) ; \\
& x=\max (p(\operatorname{isprime}(p)))
\end{aligned}
$$

Advanced Functions

Function Handles

- MATLAB distinguishes between the call to a function for evaluation and the call to the function as an abstract entity.
- Some functions require another function as their input, for example, fzero.
>> fzero(sin,1) \%error
- The correct invocation is
>> fzero(@sin,1) \%error

Anonymous Functions

- Other than storing a function in an M-file, MATLAB allows creation of a function-handle directly.

$$
\text { >> sincos }=@(x) \sin (x)+\cos (x) ;
$$

- This prevents unnecessary proliferation of M -files.
- This function can now be used for evaluation as well as a handle.
- An anonymous function can have multiple inputs and outputs.

Inline Functions

- Older versions of MATLAB allows creation of an inline function.

$$
\begin{aligned}
\gg & f=\operatorname{inline}(' 3 * \sin (2 * x .-2) ') \\
& f= \\
& \text { Inline function: } \\
& f(x)=3 * \sin \left(2 * x .^{\wedge} 2\right)
\end{aligned}
$$

- These can be invoked within a function as
>> fzero(f,1);

Bisection Method

Define a function handle f using inline. We can use the bisection method to compute the zeros of a continuous function. In this method, we take two endpoints a and b such that $f(a) f(b)<0$. This ensures that there is a zero of the function between a and b. Then, we compute their midpoint m and depending on whether $f(a) f(m)<0$ or $f(m) f(b)<0$, we assign two new endpoints. We repeat this procedure till the length of the interval made by the endpoints goes below a certain tolerance tol. Now, define a function bisect ($f, a, b, t o l$) for finding zero of f.

```
function [x] = bisect(f,a,b,tol);
x1=a;x2=b;len=b-a;
while(len>2*tol)
    m=(x1+x2)/2;y1=f(x1)*f(m);y2=f(x2)*f(m);
    if y1<0
        x2=m;
    elseif y2<0
        x1=m;
    else
        x=m;
        break;
    end
    len=x2-x1;
end
x=m;
```


Subfunctions

It is possible to have multiple functions defined within an M-file. Only the first function can be accessed from the workspace. The rest of the functions can only be accessed by the main function.

```
function [x1,x2] = quadsol(a,b,c)
d = discrim(a,b,c);
x1 = (-b+d)/(2*a);
x2 = (-b-d)/(2*a);
end
function D = discrim(A,B,C)
D = sqrt(B^2-4*A*C);
end
```


Nested Functions

It is also possible to nest functions within an M-file. The parent function and the nested functions can share variables.

```
function [x1,x2] = quadsol(a,b,c)
function D = discrim(A,B,C)
D = sqrt(B^2-4*A*C);
end
d = discrim(a,b,c);
x1 = (-b+d)/(2*a);
x2 = (-b-d)/(2*a);
end
```


ez plots

- The command ezplot makes two-dimensional plots of explicit, implicit or parametric funcions.

```
>> ezplot('sin(x)',[0,2*pi])
>> ezplot(@(x,y) x.^8+y.^8-1,[-1 1])
>> ezplot('exp(-t).*\operatorname{cos}(8*t)','exp(-t).*sin(8*t)',[-1 1])
```


An example output

ezplot3

>> ezplot3(@cos,@sin,@(t) exp(-t/8),[0 40], 'animate')
$x=\cos , y=\sin , z=\exp (-t / 8)$

ezcontour

```
>> ezcontour(@(x,y) 4*x.`2-x.*y+y.^2, [-1 1 -2 2])
>> ezcontourf(@(x,y) 4*x.^2-x.*y+y.^2,[[-1 1 -2 2])
```


ezsurf

```
>> ezsurf(@(x,y) x.^2-y.^2-1,[-1 1])
>> x=@(u,v) cosh(u).*\operatorname{cos(v);}
>> y=@(u,v) sinh(u).*\operatorname{cos(v);}
>> z=@(u,v) sin(v);
>> ezmesh(x,y,z,[-1 1 0 2*pi])
```


Data Plots

- MATLAB can plot data from files.
- Data may be stored in a file in the form of columns such as

1	2
3	4
5	6
7	8

- load datafile loads the data into MATLAB.
- Store columns into variables by issuing commands such as y = datafile(: 2), $\mathrm{x}=\operatorname{datafile(:,1).~}$
- Plot the data by issuing a command such as plot(x, y, 'rs-').

3D Plots

- To create a 3D plot from an explicit function, we first need to create a meshgrid.

$$
\begin{aligned}
& \gg \mathrm{x}=\mathrm{pi} *[0: 0.02: 1] ; \\
& \gg \mathrm{y}=2 * \mathrm{x} ; \\
& \gg \mathrm{X} Y]=\operatorname{meshgrid}(\mathrm{x}, \mathrm{y}) ;
\end{aligned}
$$

- Finally, define the function

$$
\text { >> } \mathrm{Z}=\sin (\mathrm{X} . \wedge 2+\mathrm{Y}) ;
$$

- and plot

$$
\text { >> } \operatorname{surf}(X, Y, Z)
$$

- Other relevant commands are mesh,waterfall,contour, etc.

Annotations

```
>> ezplot(@(t) exp(-t/5).*sin(t),[0 6*pi])
>> xlabel('time')
>> ylabel('amplitude')
>> title('Damped Oscillator')
```


Chaos Game

Define a function that picks an equilateral triangle and any point inside it. Then it picks one of the vertices of the triangle at random and plots the point midway between this point and the initial point. Repeat this procedure a large number of times and observe that a pattern emerges. You can use plot(z) where z is any complex number.

```
function []=chaosgame();
x1=0+0i;x2=2+0i;x3=1+1.5i;
x=[x1 x2 x3];
loc=0.5+0.5i;
for i=1:10000
    pos = randi(length(x));
    card = x(pos); %midway between current
    loc=(loc+card)/2; %location and random vertex
    plot(loc,'r.','markersize', 1);
    hold on
end
```


The programs and exercises in this presentation have been adapted from the book: Driscoll, Tobin A. Learning MATLAB. Vol. 115. SIAM, 2009.

Thank you

